Cla. LightGBM

Train a LightGBM gradient boosting classification model.

Cla. LightGBM

Processing

This brick trains a LightGBM classification model using your data. LightGBM (Light Gradient Boosting Machine) is a highly efficient and accurate machine learning algorithm that builds a series of decision trees, where each new tree corrects the errors of the previous ones.

The brick handles the entire training pipeline: it automatically splits your data into training and testing sets, encodes target labels, and calculates performance metrics. It also offers advanced features like Hyperparameter Optimization (automatically finding the best settings) and Cross-Validation (robustly testing the model) to ensure your model is ready for production.

Inputs

X
The dataset containing the features (independent variables) used to make predictions. This should be a table or matrix where rows represent samples and columns represent attributes (e.g., age, price, category).
y
The target variable (labels) you want to predict. This contains the actual class or category for each row in X.

Inputs Types

Input Types
X DataFrame
y DataSeries, NDArray, List

You can check the list of supported types here: Available Type Hints.

Outputs

Model
The trained LightGBM model object. This can be used in subsequent bricks to make predictions on new data.
Model Classes
A mapping table that links the internal numerical IDs used by the model back to the original class names (labels) found in your y input.
SHAP
The SHAP Explainer object (if enabled in options). This object allows you to generate detailed explanations for why the model made specific predictions.
Label Encoder
The encoder object used to transform your target text labels into numbers. This is useful for decoding predictions later.
Metrics
A summary of the model's performance on the test set, including scores like Accuracy, Precision, Recall, F1-Score, and ROC AUC.
CV Metrics
The performance results from Cross-Validation (if enabled). It shows the mean and standard deviation of metrics across multiple folds.
Features Importance
A table ranking your features based on how useful they were to the model. Higher importance means the feature had a greater impact on the predictions.
Prediction Set
A dataframe containing the test data used to evaluate the model, combined with the True Labels, Predicted Labels, and Probabilities. It helps you analyze where the model made mistakes.
HPO Trials
A detailed log of every trial run during Hyperparameter Optimization (if enabled), showing which parameters were tested and the resulting score.
HPO Best
A dictionary containing the single best set of parameters found during the optimization process.

The Prediction Set output contains the following specific data fields:

  • feature_0, feature_1...: The original input features from X.
  • proba: (Binary only) The probability of the positive class.
  • proba_{classname}: (Multiclass only) The probability for each specific class.
  • y_true: The actual correct label.
  • y_pred: The label predicted by the model.
  • is_false_prediction: A boolean (True/False) indicating if the model guessed wrong.

Outputs Types

Output Types
Model Any
Model Classes DataFrame
SHAP Any
Label Encoder Any
Metrics DataFrame, Dict
CV Metrics DataFrame
Features Importance DataFrame
Prediction Set DataFrame
HPO Trials DataFrame
HPO Best Dict

You can check the list of supported types here: Available Type Hints.

Options

The Cla. LightGBM brick contains some changeable options:

Max Number of Trees
(n_estimators) The maximum number of decision trees to build. More trees can learn more complex patterns but increase training time and the risk of overfitting.
Enable Early Stopping
If enabled, training will stop automatically if the model's performance on the validation set stops improving, preventing wasted time and overfitting.
Early Stopping Rounds
The number of consecutive rounds without improvement allowed before training stops (only applies if Early Stopping is enabled).
Max Depth
Limits how deep each tree can grow. A lower value prevents the model from memorizing the data (overfitting), while a higher value allows it to capture complex relationships. -1 means no limit.
Number of Leaves
The maximum number of leaves in one tree. This is the main control for model complexity in LightGBM.
Learning Rate
Controls how much the model changes in response to the estimated error each time the weights are updated. Lower values generally require more trees but yield better accuracy.
Min Split Gain
The minimum improvement in loss required to make a further partition on a leaf node of the tree.
Min Child Weight (Hessian)
The minimum sum of instance weight (hessian) needed in a child (leaf). Used to control overfitting.
Min Leaf Samples
The minimum number of data records required in a leaf. A higher number prevents the model from capturing noise specific to a few samples.
Colsample by Tree
The fraction of features (columns) to be randomly selected for each tree. Useful for speeding up training and preventing overfitting.
L1 Regularization
(reg_alpha) Adds a penalty for the sum of absolute weights. This can encourage the model to use fewer features (sparsity).
L2 Regularization
(reg_lambda) Adds a penalty for the sum of squared weights. This prevents weights from becoming too large and stabilizes the model.
Use Bagging
If enabled, the model will use a random subset of data rows for each iteration.
Subsample Ratio
The fraction of data to use (e.g., 0.8 uses 80% of data).
Subsample Frequency
How often (in iterations) to perform bagging.
Auto Split Data
If enabled, the brick automatically calculates the best split ratio for training/testing based on your dataset size.
Shuffle Split
Whether to shuffle the data before splitting. Recommended to ensure the training and test sets are representative.
Stratify Split
Ensures that the distribution of target classes is the same in both the training and test sets. Highly recommended for classification.
Test/Validation Set %
The percentage of data to withhold for testing/validation (ignored if Auto Split is on).
Retrain On Full Data
If enabled, after evaluating the model on the test set, the brick will re-train the model on the entire dataset. This is best for models intended for final deployment.
Average Strategy
How to calculate metrics (Precision, Recall, F1) for multiclass problems.
  • auto: Automatically selects the best strategy based on class balance.
  • binary: Only for two classes.
  • micro: Calculate metrics globally by counting total true positives, false negatives and false positives.
  • macro: Calculate metrics for each label, and find their unweighted mean. Does not take label imbalance into account.
  • weighted: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label).
Enable Cross-Validation
If enabled, the model performs k-fold cross-validation instead of a simple train/test split. This provides a more robust estimate of model performance.
Number of CV Folds
The number of folds to use for cross-validation (e.g., 5 means the data is split into 5 parts).
Hyperparameter Optim.
If enabled, the brick will ignore the manual parameters (like Learning Rate or Num Leaves) and run a search to find the mathematical best configuration for your data.
Optimization Metric
The specific score the optimizer should try to maximize (e.g., "F1 Score" or "ROC-AUC").
Optimization Method
The algorithm used to search for the best hyperparameters.
  • Tree-structured Parzen: A Bayesian optimization method that models good vs bad parameter regions using probability distributions and prioritizes sampling where success is statistically more likely.
  • Gaussian Process: ses a probabilistic regression model (Gaussian Process) to estimate performance uncertainty and selects new trials using acquisition functions.
  • CMA-ES: An evolutionary strategy that adapts the covariance matrix of a multivariate normal distribution to efficiently search complex, non-linear, non-convex spaces.
  • Random Sobol Search: Uses low-discrepancy quasi-random sequences to ensure uniform coverage of the parameter space, avoiding clustering and gaps.
  • Random Search: Uniform random sampling of parameter configurations without learning or feedback between iterations.
Optimization Iterations
The number of different parameter combinations to try. Higher numbers take longer but may find better models.
Positive Label (Binary Only)
Explicitly specify which class label should be considered "Positive" (e.g., "Yes", "1", "Churned"). Useful for binary classification metrics.
Metrics as
Choose the format for the Metrics output.
SHAP Explainer
If enabled, generates a SHAP explainer object for interpreting the model.
SHAP Sampler
If enabled, samples the background data for SHAP to improve speed on large datasets.
SHAP Feature Perturbation
Technical setting for how SHAP handles correlated features.
  • Interventional: Breaks feature dependencies (safer causal interpretation).
  • Tree Path Dependent: Follows data distribution (faster).
Number of Jobs
The number of CPU cores to use for training. "All" uses all available cores.
Random State
A seed number to ensure results are reproducible. Using the same seed and data yields the same model.
Brick Caching
If enabled, saves the results to a temporary cache. If the brick is re-run with the exact same inputs and settings, it loads the cached result instantly instead of re-training.
Verbose Logging
If enabled, detailed progress logs will be printed to the console.
import logging
import warnings
import shap
import json
import xxhash
import hashlib
import tempfile
import sklearn
import scipy
import joblib
import numpy as np
import pandas as pd
import polars as pl
from lightgbm import LGBMClassifier, early_stopping as early_stopping_call, Booster
from sklearn.preprocessing import LabelEncoder
from pathlib import Path
from scipy import sparse
from collections import Counter
from optuna.samplers import (
    TPESampler,
    RandomSampler,
    GPSampler,
    CmaEsSampler,
    QMCSampler,
)
import optuna
from optuna import Study
from optuna.trial import FrozenTrial
from optuna.pruners import HyperbandPruner
from optuna import create_study
from sklearn.model_selection import train_test_split, cross_validate, StratifiedKFold
from sklearn.metrics import (
    accuracy_score,
    precision_score,
    recall_score,
    f1_score,
    roc_auc_score,
    make_scorer,
)
from dataclasses import dataclass
from datetime import datetime
from coded_flows.types import (
    Union,
    Dict,
    List,
    Tuple,
    NDArray,
    DataFrame,
    DataSeries,
    Any,
    Tuple,
)
from coded_flows.utils import CodedFlowsLogger

logger = CodedFlowsLogger(name="Cla. LightGBM", level=logging.INFO)
optuna.logging.set_verbosity(optuna.logging.ERROR)
warnings.filterwarnings("ignore", category=optuna.exceptions.ExperimentalWarning)
DataType = Union[
    pd.DataFrame, pl.DataFrame, np.ndarray, sparse.spmatrix, pd.Series, pl.Series
]


@dataclass
class _DatasetFingerprint:
    """Lightweight fingerprint of a dataset."""

    hash: str
    shape: tuple
    computed_at: str
    data_type: str
    method: str


class _UniversalDatasetHasher:
    """
    High-performance dataset hasher optimizing for zero-copy operations
    and native backend execution (C/Rust).
    """

    def __init__(
        self,
        data_size: int,
        method: str = "auto",
        sample_size: int = 100000,
        verbose: bool = False,
    ):
        self.method = method
        self.sample_size = sample_size
        self.data_size = data_size
        self.verbose = verbose

    def hash_data(self, data: DataType) -> _DatasetFingerprint:
        """
        Main entry point: hash any supported data format.
        Auto-detects format and applies optimal strategy.
        """
        if isinstance(data, pd.DataFrame):
            return self._hash_pandas(data)
        elif isinstance(data, pl.DataFrame):
            return self._hash_polars(data)
        elif isinstance(data, pd.Series):
            return self._hash_pandas_series(data)
        elif isinstance(data, pl.Series):
            return self._hash_polars_series(data)
        elif isinstance(data, np.ndarray):
            return self._hash_numpy(data)
        elif sparse.issparse(data):
            return self._hash_sparse(data)
        else:
            raise TypeError(f"Unsupported data type: {type(data)}")

    def _hash_pandas(self, df: pd.DataFrame) -> _DatasetFingerprint:
        """
        Optimized Pandas hashing using pd.util.hash_pandas_object.
        Avoids object-to-string conversion overhead.
        """
        method = self._determine_method(self.data_size, self.method)
        self.verbose and logger.info(
            f"Hashing Pandas: {self.data_size:,} rows - {method}"
        )
        target_df = df
        if method == "sampled":
            target_df = self._get_pandas_sample(df)
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {
                "columns": df.columns.tolist(),
                "dtypes": {k: str(v) for (k, v) in df.dtypes.items()},
                "shape": df.shape,
            },
        )
        try:
            row_hashes = pd.util.hash_pandas_object(target_df, index=False)
            hasher.update(memoryview(row_hashes.values))
        except Exception as e:
            self.verbose and logger.warning(
                f"Fast hash failed, falling back to slow hash: {e}"
            )
            self._hash_pandas_fallback(hasher, target_df)
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=df.shape,
            computed_at=datetime.now().isoformat(),
            data_type="pandas",
            method=method,
        )

    def _get_pandas_sample(self, df: pd.DataFrame) -> pd.DataFrame:
        """Deterministic slicing for sampling (Zero randomness)."""
        if self.data_size <= self.sample_size:
            return df
        chunk = self.sample_size // 3
        head = df.iloc[:chunk]
        mid_idx = self.data_size // 2
        mid = df.iloc[mid_idx : mid_idx + chunk]
        tail = df.iloc[-chunk:]
        return pd.concat([head, mid, tail])

    def _hash_pandas_fallback(self, hasher, df: pd.DataFrame):
        """Legacy fallback for complex object types."""
        for col in df.columns:
            val = df[col].astype(str).values
            hasher.update(val.astype(np.bytes_).tobytes())

    def _hash_polars(self, df: pl.DataFrame) -> _DatasetFingerprint:
        """
        Optimized Polars hashing using native Rust execution.
        """
        method = self._determine_method(self.data_size, self.method)
        self.verbose and logger.info(
            f"Hashing Polars: {self.data_size:,} rows - {method}"
        )
        target_df = df
        if method == "sampled" and self.data_size > self.sample_size:
            indices = self._get_sample_indices(self.data_size, self.sample_size)
            target_df = df.gather(indices)
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {
                "columns": df.columns,
                "dtypes": [str(t) for t in df.dtypes],
                "shape": df.shape,
            },
        )
        row_hashes = target_df.hash_rows()
        hasher.update(memoryview(row_hashes.to_numpy()))
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=df.shape,
            computed_at=datetime.now().isoformat(),
            data_type="polars",
            method=method,
        )

    def _hash_pandas_series(self, series: pd.Series) -> _DatasetFingerprint:
        """Hash Pandas Series using the fastest vectorized method."""
        self.verbose and logger.info(f"Hashing Pandas Series: {self.data_size:,} rows")
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {
                "name": series.name if series.name else "None",
                "dtype": str(series.dtype),
                "shape": series.shape,
            },
        )
        try:
            row_hashes = pd.util.hash_pandas_object(series, index=False)
            hasher.update(memoryview(row_hashes.values))
        except Exception as e:
            self.verbose and logger.warning(f"Series hash failed, falling back: {e}")
            hasher.update(memoryview(series.astype(str).values.tobytes()))
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=series.shape,
            computed_at=datetime.now().isoformat(),
            data_type="pandas_series",
            method="full",
        )

    def _hash_polars_series(self, series: pl.Series) -> _DatasetFingerprint:
        """Hash Polars Series using native Polars expressions."""
        self.verbose and logger.info(f"Hashing Polars Series: {self.data_size:,} rows")
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {"name": series.name, "dtype": str(series.dtype), "shape": series.shape},
        )
        try:
            row_hashes = series.hash()
            hasher.update(memoryview(row_hashes.to_numpy()))
        except Exception as e:
            self.verbose and logger.warning(
                f"Polars series native hash failed. Falling back."
            )
            hasher.update(str(series.to_list()).encode())
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=series.shape,
            computed_at=datetime.now().isoformat(),
            data_type="polars_series",
            method="full",
        )

    def _hash_numpy(self, arr: np.ndarray) -> _DatasetFingerprint:
        """
        Optimized NumPy hashing using Buffer Protocol (Zero-Copy).
        """
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {"shape": arr.shape, "dtype": str(arr.dtype), "strides": arr.strides},
        )
        if arr.flags["C_CONTIGUOUS"] or arr.flags["F_CONTIGUOUS"]:
            hasher.update(memoryview(arr))
        else:
            hasher.update(memoryview(np.ascontiguousarray(arr)))
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=arr.shape,
            computed_at=datetime.now().isoformat(),
            data_type="numpy",
            method="full",
        )

    def _hash_sparse(self, matrix: sparse.spmatrix) -> _DatasetFingerprint:
        """
        Optimized sparse hashing. Hashes underlying data arrays directly.
        """
        if not (sparse.isspmatrix_csr(matrix) or sparse.isspmatrix_csc(matrix)):
            matrix = matrix.tocsr()
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher, {"shape": matrix.shape, "format": matrix.format, "nnz": matrix.nnz}
        )
        hasher.update(memoryview(matrix.data))
        hasher.update(memoryview(matrix.indices))
        hasher.update(memoryview(matrix.indptr))
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=matrix.shape,
            computed_at=datetime.now().isoformat(),
            data_type=f"sparse_{matrix.format}",
            method="sparse",
        )

    def _determine_method(self, rows: int, requested: str) -> str:
        if requested != "auto":
            return requested
        if rows < 5000000:
            return "full"
        return "sampled"

    def _hash_schema(self, hasher, schema: Dict[str, Any]):
        """Compact schema hashing."""
        hasher.update(
            json.dumps(schema, sort_keys=True, separators=(",", ":")).encode()
        )

    def _get_sample_indices(self, total_rows: int, sample_size: int) -> list:
        """Calculate indices for sampling without generating full range lists."""
        chunk = sample_size // 3
        indices = list(range(min(chunk, total_rows)))
        mid_start = max(0, total_rows // 2 - chunk // 2)
        mid_end = min(mid_start + chunk, total_rows)
        indices.extend(range(mid_start, mid_end))
        last_start = max(0, total_rows - chunk)
        indices.extend(range(last_start, total_rows))
        return sorted(list(set(indices)))


def _normalize_hpo_df(df):
    df = df.copy()
    param_cols = [c for c in df.columns if c.startswith("params_")]
    df[param_cols] = df[param_cols].astype("string[pyarrow]")
    return df


def _has_class_imbalance(y, threshold=1.5):
    """
    Check if there is class imbalance in the target variable.

    Parameters:
    -----------
    y : array-like or pd.Series
        Target variable
    threshold : float, default=1.5
        Imbalance ratio threshold. If max_class/min_class >= threshold,
        considers it imbalanced.

    Returns:
    --------
    bool
        True if imbalanced, False otherwise
    """
    y = y.values if isinstance(y, pd.Series) else np.asarray(y)
    classes = np.unique(y)
    n_classes = len(classes)
    if n_classes < 2:
        return False
    counts = Counter(y)
    max_c = max(counts.values())
    min_c = min(counts.values())
    if min_c == 0:
        return True
    imbalance = max_c / min_c
    return imbalance >= threshold


def _get_shape_and_sparsity(X: Any) -> Tuple[int, int, float, bool]:
    """
    Efficiently extracts shape and estimates sparsity without converting
    the entire dataset to numpy.
    """
    (n_samples, n_features) = (0, 0)
    is_sparse = False
    sparsity = 0.0
    if hasattr(X, "nnz") and hasattr(X, "shape"):
        (n_samples, n_features) = X.shape
        is_sparse = True
        sparsity = 1.0 - X.nnz / (n_samples * n_features)
        return (n_samples, n_features, sparsity, is_sparse)
    if hasattr(X, "height") and hasattr(X, "width"):
        (n_samples, n_features) = (X.height, X.width)
        return (n_samples, n_features, 0.0, False)
    if hasattr(X, "shape") and hasattr(X, "iloc"):
        (n_samples, n_features) = X.shape
        return (n_samples, n_features, 0.0, False)
    if isinstance(X, list):
        X = np.array(X)
    if hasattr(X, "shape"):
        (n_samples, n_features) = X.shape
        return (n_samples, n_features, 0.0, False)
    raise ValueError("Unsupported data type")


def _smart_split(
    n_samples,
    X,
    y,
    *,
    random_state=42,
    shuffle=True,
    stratify=None,
    fixed_test_split=None,
    verbose=True,
):
    """
    Parameters
    ----------
    n_samples : int
        Number of samples in the dataset (len(X) or len(y))
    X : array-like
        Features
    y : array-like
        Target
    random_state : int
    shuffle : bool
    stratify : array-like or None
        For stratified splitting (recommended for classification)

    Returns
    -------
    If return_val=True  → X_train, X_val, X_test, y_train, y_val, y_test
    If return_val=False → X_train, X_test, y_train, y_test
    """
    if fixed_test_split:
        test_ratio = fixed_test_split
        val_ratio = fixed_test_split
    elif n_samples <= 1000:
        test_ratio = 0.2
        val_ratio = 0.1
    elif n_samples < 10000:
        test_ratio = 0.15
        val_ratio = 0.15
    elif n_samples < 100000:
        test_ratio = 0.1
        val_ratio = 0.1
    elif n_samples < 1000000:
        test_ratio = 0.05
        val_ratio = 0.05
    else:
        test_ratio = 0.01
        val_ratio = 0.01
    (X_train, X_test, y_train, y_test) = train_test_split(
        X,
        y,
        test_size=test_ratio,
        random_state=random_state,
        shuffle=shuffle,
        stratify=stratify,
    )
    val_size_in_train = val_ratio / (1 - test_ratio)
    verbose and logger.info(
        f"Split → Train: {1 - test_ratio:.2%} | Test: {test_ratio:.2%} (no validation set)"
    )
    return (X_train, X_test, y_train, y_test, val_size_in_train)


def _get_best_metric_average_strategy(y_true, balance_threshold: float = 0.5) -> str:
    """
    Analyzes y_true to determine the best averaging strategy.

    Args:
        y_true: Input array (Numpy array, Pandas Series, or Polars Series).
        balance_threshold: Float (0 to 1). If min_class_count / max_class_count
                           is below this, the data is considered imbalanced.

    Returns:
        str: 'binary', 'weighted', or 'macro'
    """
    counts = None
    if hasattr(y_true, "value_counts") and hasattr(y_true, "values"):
        counts = y_true.value_counts().values
    elif hasattr(y_true, "value_counts") and hasattr(y_true, "to_numpy"):
        vc = y_true.value_counts()
        if "count" in vc.columns:
            counts = vc["count"].to_numpy()
        else:
            counts = vc[:, 1].to_numpy()
    elif isinstance(y_true, np.ndarray):
        (_, counts) = np.unique(y_true, return_counts=True)
    else:
        (_, counts) = np.unique(np.array(y_true), return_counts=True)
    if counts is None or len(counts) == 0:
        raise ValueError("Input y_true appears to be empty.")
    n_classes = len(counts)
    if n_classes <= 2:
        return "binary"
    min_c = np.min(counts)
    max_c = np.max(counts)
    ratio = min_c / max_c
    if ratio < balance_threshold:
        return "weighted"
    else:
        return "macro"


def _ensure_feature_names(X, feature_names=None):
    if isinstance(X, pd.DataFrame):
        return list(X.columns)
    if isinstance(X, np.ndarray):
        if feature_names is None:
            feature_names = [f"feature_{i}" for i in range(X.shape[1])]
        return feature_names
    raise TypeError("X must be a pandas DataFrame or numpy ndarray")


def _perform_cross_validation(
    model,
    X,
    y,
    cv_folds,
    average_strategy,
    shuffle,
    random_state,
    n_jobs,
    verbose,
    pos_label=None,
) -> dict[str, Any]:
    """Perform cross-validation on the model."""
    verbose and logger.info(f"Performing {cv_folds}-fold cross-validation...")
    cv = StratifiedKFold(n_splits=cv_folds, shuffle=shuffle, random_state=random_state)
    if average_strategy == "binary":
        scoring = {
            "accuracy": "accuracy",
            "precision": make_scorer(
                precision_score, average="binary", pos_label=pos_label
            ),
            "recall": make_scorer(recall_score, average="binary", pos_label=pos_label),
            "f1": make_scorer(f1_score, average="binary", pos_label=pos_label),
            "roc_auc": "roc_auc",
        }
    else:
        average_strategy_suffix = f"_{average_strategy}"
        roc_average_strategy_suffix = (
            f"_{average_strategy}" if average_strategy == "weighted" else ""
        )
        roc_auc_ovr_suffix = "_ovr"
        scoring = (
            f"f1{average_strategy_suffix}",
            "accuracy",
            f"precision{average_strategy_suffix}",
            f"recall{average_strategy_suffix}",
            f"roc_auc{roc_auc_ovr_suffix}{roc_average_strategy_suffix}",
        )
    cv_results = cross_validate(
        model, X, y, cv=cv, scoring=scoring, return_train_score=True, n_jobs=n_jobs
    )

    def get_score_mean_std(metric_key):
        if metric_key in cv_results:
            return (cv_results[metric_key].mean(), cv_results[metric_key].std())
        return (0.0, 0.0)

    if average_strategy == "binary":
        (accuracy_mean, accuracy_std) = get_score_mean_std("test_accuracy")
        (precision_mean, precision_std) = get_score_mean_std("test_precision")
        (recall_mean, recall_std) = get_score_mean_std("test_recall")
        (f1_mean, f1_std) = get_score_mean_std("test_f1")
        (roc_auc_mean, roc_auc_std) = get_score_mean_std("test_roc_auc")
    else:
        (accuracy_mean, accuracy_std) = get_score_mean_std("test_accuracy")
        (precision_mean, precision_std) = get_score_mean_std(
            f"test_precision{average_strategy_suffix}"
        )
        (recall_mean, recall_std) = get_score_mean_std(
            f"test_recall{average_strategy_suffix}"
        )
        (f1_mean, f1_std) = get_score_mean_std(f"test_f1{average_strategy_suffix}")
        roc_key = f"test_roc_auc{roc_auc_ovr_suffix}{roc_average_strategy_suffix}"
        (roc_auc_mean, roc_auc_std) = get_score_mean_std(roc_key)
    verbose and logger.info(
        f"CV Accuracy  : {accuracy_mean:.4f} (+/- {accuracy_std:.4f})"
    )
    verbose and logger.info(
        f"CV Precision : {precision_mean:.4f} (+/- {precision_std:.4f})"
    )
    verbose and logger.info(f"CV Recall    : {recall_mean:.4f} (+/- {recall_std:.4f})")
    verbose and logger.info(f"CV F1 Score  : {f1_mean:.4f} (+/- {f1_std:.4f})")
    verbose and logger.info(
        f"CV ROC-AUC   : {roc_auc_mean:.4f} (+/- {roc_auc_std:.4f})"
    )
    CV_metrics = pd.DataFrame(
        {
            "Metric": ["Accuracy", "Precision", "Recall", "F1-Score", "ROC AUC"],
            "Mean": [accuracy_mean, precision_mean, recall_mean, f1_mean, roc_auc_mean],
            "Std": [accuracy_std, precision_std, recall_std, f1_std, roc_auc_std],
        }
    )
    return CV_metrics


def _compute_score(model, X, y, metric, average_strategy, pos_label=None):
    score_params = {"average": average_strategy, "zero_division": 0}
    y_pred = model.predict(X)
    if average_strategy != "binary":
        y_score = model.predict_proba(X)
    else:
        score_params["pos_label"] = pos_label
        if pos_label is not None:
            classes = list(model.classes_)
            try:
                pos_idx = classes.index(pos_label)
            except ValueError:
                pos_idx = 1 if len(classes) > 1 else 0
            y_score = model.predict_proba(X)[:, pos_idx]
        else:
            y_score = model.predict_proba(X)[:, 1]
    if metric == "Accuracy":
        score = accuracy_score(y, y_pred)
    elif metric == "Precision":
        score = precision_score(y, y_pred, **score_params)
    elif metric == "Recall":
        score = recall_score(y, y_pred, **score_params)
    elif metric == "F1 Score":
        score = f1_score(y, y_pred, **score_params)
    elif metric == "ROC-AUC":
        if average_strategy != "binary":
            score = roc_auc_score(
                y, y_score, multi_class="ovr", average=average_strategy
            )
        else:
            score = roc_auc_score(y, y_score)
    return score


def _get_cv_scoring_object(metric, average_strategy, pos_label=None):
    """
    Returns a scoring object (string or callable) suitable for cross_validate.
    Used during HPO.
    """
    if average_strategy == "binary":
        if metric == "F1 Score":
            return make_scorer(f1_score, average="binary", pos_label=pos_label)
        elif metric == "Accuracy":
            return "accuracy"
        elif metric == "Precision":
            return make_scorer(precision_score, average="binary", pos_label=pos_label)
        elif metric == "Recall":
            return make_scorer(recall_score, average="binary", pos_label=pos_label)
        elif metric == "ROC-AUC":
            return "roc_auc"
    else:
        average_strategy_suffix = f"_{average_strategy}"
        roc_auc_ovr_suffix = "_ovr"
        roc_average_strategy_suffix = (
            f"_{average_strategy}" if average_strategy == "weighted" else ""
        )
        if metric == "F1 Score":
            return f"f1{average_strategy_suffix}"
        elif metric == "Accuracy":
            return "accuracy"
        elif metric == "Precision":
            return f"precision{average_strategy_suffix}"
        elif metric == "Recall":
            return f"recall{average_strategy_suffix}"
        elif metric == "ROC-AUC":
            return f"roc_auc{roc_auc_ovr_suffix}{roc_average_strategy_suffix}"


def _hyperparameters_optimization(
    X,
    y,
    constant_hyperparameters,
    optimization_metric,
    metric_average_strategy,
    val_ratio,
    shuffle_split,
    stratify_split,
    use_cross_val,
    cv_folds,
    n_trials=50,
    strategy="maximize",
    sampler="Tree-structured Parzen",
    seed=None,
    n_jobs=-1,
    verbose=False,
    pos_label=None,
):
    direction = "maximize" if strategy.lower() == "maximize" else "minimize"
    sampler_map = {
        "Tree-structured Parzen": TPESampler(seed=seed),
        "Gaussian Process": GPSampler(seed=seed),
        "CMA-ES": CmaEsSampler(seed=seed),
        "Random Search": RandomSampler(seed=seed),
        "Random Sobol Search": QMCSampler(seed=seed),
    }
    if sampler in sampler_map:
        chosen_sampler = sampler_map[sampler]
    else:
        logger.warning(f"Sampler '{sampler}' not recognized → falling back to TPE")
        chosen_sampler = TPESampler(seed=seed)
    chosen_pruner = HyperbandPruner()
    if use_cross_val:
        cv = StratifiedKFold(
            n_splits=cv_folds, shuffle=shuffle_split, random_state=seed
        )
        cv_score_obj = _get_cv_scoring_object(
            optimization_metric, metric_average_strategy, pos_label
        )
    else:
        (X_train, X_val, y_train, y_val) = train_test_split(
            X,
            y,
            test_size=val_ratio,
            random_state=seed,
            stratify=y if stratify_split else None,
            shuffle=shuffle_split,
        )
    is_unbalance = constant_hyperparameters.get("is_unbalance")
    class_weight = constant_hyperparameters.get("class_weight")
    use_bagging = constant_hyperparameters.get("use_bagging")
    model_objective = constant_hyperparameters.get("objective")

    def logging_callback(study: Study, trial: FrozenTrial):
        """Callback function to log trial progress"""
        verbose and logger.info(
            f"Trial {trial.number} finished with value: {trial.value} and parameters: {trial.params}"
        )
        try:
            verbose and logger.info(f"Best value so far: {study.best_value}")
            verbose and logger.info(f"Best parameters so far: {study.best_params}")
        except ValueError:
            verbose and logger.info(f"No successful trials completed yet")
        verbose and logger.info(f"" + "-" * 50)

    def objective(trial):
        try:
            params = {}
            params["n_estimators"] = trial.suggest_int("n_estimators", 50, 1000)
            params["max_depth"] = trial.suggest_int("max_depth", 1, 15)
            params["num_leaves"] = trial.suggest_int("num_leaves", 20, 500)
            params["learning_rate"] = trial.suggest_float(
                "learning_rate", 0.001, 0.5, log=True
            )
            params["min_split_gain"] = trial.suggest_float("min_split_gain", 0.0, 5.0)
            params["min_child_weight"] = trial.suggest_float(
                "min_child_weight", 0.0, 10.0
            )
            params["min_child_samples"] = trial.suggest_int("min_child_samples", 5, 100)
            params["colsample_bytree"] = trial.suggest_float(
                "colsample_bytree", 0.1, 1.0
            )
            params["reg_alpha"] = trial.suggest_float(
                "reg_alpha", 1e-08, 100.0, log=True
            )
            params["reg_lambda"] = trial.suggest_float(
                "reg_lambda", 1e-08, 100.0, log=True
            )
            if use_bagging:
                params["subsample"] = trial.suggest_float("subsample", 0.5, 1.0)
                params["subsample_freq"] = trial.suggest_int("subsample_freq", 1, 10)
            else:
                params["subsample"] = 1.0
                params["subsample_freq"] = 0
            model = LGBMClassifier(
                **params,
                objective=model_objective,
                class_weight=class_weight,
                is_unbalance=is_unbalance,
                random_state=seed,
                n_jobs=n_jobs,
                verbosity=-1,
            )
            if use_cross_val:
                scores = cross_validate(
                    model, X, y, cv=cv, n_jobs=n_jobs, scoring=cv_score_obj
                )
                return scores["test_score"].mean()
            else:
                model.fit(X_train, y_train)
                score = _compute_score(
                    model,
                    X_val,
                    y_val,
                    optimization_metric,
                    metric_average_strategy,
                    pos_label,
                )
                return score
        except Exception as e:
            verbose and logger.error(
                f"Trial {trial.number} failed with error: {str(e)}"
            )
            raise

    study = create_study(
        direction=direction, sampler=chosen_sampler, pruner=chosen_pruner
    )
    study.optimize(
        objective,
        n_trials=n_trials,
        catch=(Exception,),
        n_jobs=n_jobs,
        callbacks=[logging_callback],
    )
    verbose and logger.info(f"Optimization completed!")
    verbose and logger.info(
        f"   Best Number of Trees       : {study.best_params['n_estimators']}"
    )
    verbose and logger.info(
        f"   Best Max Depth             : {study.best_params['max_depth']}"
    )
    verbose and logger.info(
        f"   Best Number of Leaves      : {study.best_params['num_leaves']}"
    )
    verbose and logger.info(
        f"   Best Learning Rate         : {study.best_params['learning_rate']}"
    )
    verbose and logger.info(
        f"   Best L1 Regularization     : {study.best_params['reg_alpha']}"
    )
    verbose and logger.info(
        f"   Best L2 Regularization     : {study.best_params['reg_lambda']}"
    )
    verbose and logger.info(
        f"   Best Min Child Weight      : {study.best_params['min_child_weight']}"
    )
    verbose and logger.info(
        f"   Best Min Split Gain        : {study.best_params['min_split_gain']}"
    )
    verbose and logger.info(
        f"   Best Min Leaf Samples      : {study.best_params['min_child_samples']}"
    )
    verbose and logger.info(
        f"   Best Colsample by Tree     : {study.best_params['colsample_bytree']}"
    )
    if use_bagging:
        verbose and logger.info(
            f"   Best Subsample Ratio       : {study.best_params['subsample']}"
        )
        verbose and logger.info(
            f"   Best Subsample Frequency   : {study.best_params['subsample_freq']}"
        )
    verbose and logger.info(
        f"   Best {optimization_metric:<22}: {study.best_value:.4f}"
    )
    verbose and logger.info(f"   Sampler used               : {sampler}")
    verbose and logger.info(f"   Direction                  : {direction}")
    if use_cross_val:
        verbose and logger.info(f"   Cross-validation           : {cv_folds}-fold")
    else:
        verbose and logger.info(
            f"   Validation                 : single train/val split"
        )
    trials = study.trials_dataframe()
    trials["best_value"] = trials["value"].cummax()
    cols = list(trials.columns)
    value_idx = cols.index("value")
    cols = [c for c in cols if c != "best_value"]
    new_order = cols[: value_idx + 1] + ["best_value"] + cols[value_idx + 1 :]
    trials = trials[new_order]
    return (study.best_params, trials)


def _combine_test_data(
    X_test, y_true, y_pred, y_proba, class_names, features_names=None
):
    """
    Combine X_test, y_true, y_pred, and y_proba into a single DataFrame.

    Parameters:
    -----------
    X_test : pandas/polars DataFrame, numpy array, or scipy sparse matrix
        Test features
    y_true : pandas/polars Series, numpy array, or list
        True labels
    y_pred : pandas/polars Series, numpy array, or list
        Predicted labels
    y_proba : pandas/polars Series/DataFrame, numpy array (1D or 2D), or list
        Prediction probabilities - can be:
        - 1D array for binary classification (probability of positive class)
        - 2D array for multiclass (probabilities for each class)
    class_names : list or array-like
        Names of the classes in order.
        For binary classification with 1D y_proba, only the positive class name is needed.

    Returns:
    --------
    pandas.DataFrame
        Combined DataFrame with features, probabilities, y_true, and y_pred
    """
    if sparse.issparse(X_test):
        X_df = pd.DataFrame(X_test.toarray())
    elif isinstance(X_test, np.ndarray):
        X_df = pd.DataFrame(X_test)
    elif hasattr(X_test, "to_pandas"):
        X_df = X_test.to_pandas()
    elif isinstance(X_test, pd.DataFrame):
        X_df = X_test.copy()
    else:
        raise TypeError(f"Unsupported type for X_test: {type(X_test)}")
    if X_df.columns.tolist() == list(range(len(X_df.columns))):
        X_df.columns = (
            [f"feature_{i}" for i in range(len(X_df.columns))]
            if features_names is None
            else features_names
        )
    if isinstance(y_true, list):
        y_true_series = pd.Series(y_true, name="y_true")
    elif isinstance(y_true, np.ndarray):
        y_true_series = pd.Series(y_true, name="y_true")
    elif hasattr(y_true, "to_pandas"):
        y_true_series = y_true.to_pandas()
        y_true_series.name = "y_true"
    elif isinstance(y_true, pd.Series):
        y_true_series = y_true.copy()
        y_true_series.name = "y_true"
    else:
        raise TypeError(f"Unsupported type for y_true: {type(y_true)}")
    if isinstance(y_pred, list):
        y_pred_series = pd.Series(y_pred, name="y_pred")
    elif isinstance(y_pred, np.ndarray):
        y_pred_series = pd.Series(y_pred, name="y_pred")
    elif hasattr(y_pred, "to_pandas"):
        y_pred_series = y_pred.to_pandas()
        y_pred_series.name = "y_pred"
    elif isinstance(y_pred, pd.Series):
        y_pred_series = y_pred.copy()
        y_pred_series.name = "y_pred"
    else:
        raise TypeError(f"Unsupported type for y_pred: {type(y_pred)}")
    if isinstance(y_proba, list):
        y_proba_array = np.array(y_proba)
    elif isinstance(y_proba, np.ndarray):
        y_proba_array = y_proba
    elif hasattr(y_proba, "to_pandas"):
        y_proba_pd = y_proba.to_pandas()
        if isinstance(y_proba_pd, pd.Series):
            y_proba_array = y_proba_pd.values
        else:
            y_proba_array = y_proba_pd.values
    elif isinstance(y_proba, pd.Series):
        y_proba_array = y_proba.values
    elif isinstance(y_proba, pd.DataFrame):
        y_proba_array = y_proba.values
    else:
        raise TypeError(f"Unsupported type for y_proba: {type(y_proba)}")

    def sanitize_class_name(class_name):
        """Convert class name to valid column name by replacing spaces and special chars"""
        return str(class_name).replace(" ", "_").replace("-", "_")

    if y_proba_array.ndim == 1:
        y_proba_df = pd.DataFrame({"proba": y_proba_array})
    else:
        n_classes = y_proba_array.shape[1]
        if len(class_names) == n_classes:
            proba_columns = [f"proba_{sanitize_class_name(cls)}" for cls in class_names]
        else:
            proba_columns = [f"proba_{i}" for i in range(n_classes)]
        y_proba_df = pd.DataFrame(y_proba_array, columns=proba_columns)
    y_proba_df = y_proba_df.reset_index(drop=True)
    X_df = X_df.reset_index(drop=True)
    y_true_series = y_true_series.reset_index(drop=True)
    y_pred_series = y_pred_series.reset_index(drop=True)
    is_false_prediction = pd.Series(
        y_true_series != y_pred_series, name="is_false_prediction"
    ).reset_index(drop=True)
    result_df = pd.concat(
        [X_df, y_proba_df, y_true_series, y_pred_series, is_false_prediction], axis=1
    )
    return result_df


def _get_feature_importance(model, feature_names=None, sort=True, top_n=None):
    """
    Extract feature importance from a Random Forest model.

    Parameters:
    -----------
    model : Fitted model
    feature_names : list or array-like, optional
        Names of features. If None, uses generic names like 'feature_0', 'feature_1', etc.
    sort : bool, default=True
        Whether to sort features by importance (descending)
    top_n : int, optional
        If specified, returns only the top N most important features

    Returns:
    --------
    pd.DataFrame
        DataFrame with columns: 'feature', 'importance'
        Importance values represent the mean decrease in impurity (Gini importance)
    """
    importances = model.feature_importances_
    if feature_names is None:
        feature_names = [f"feature_{i}" for i in range(len(importances))]
    importance_df = pd.DataFrame({"feature": feature_names, "importance": importances})
    if sort:
        importance_df = importance_df.sort_values("importance", ascending=False)
    importance_df = importance_df.reset_index(drop=True)
    if top_n is not None:
        importance_df = importance_df.head(top_n)
    return importance_df


def _smart_shap_background(
    X: Union[np.ndarray, pd.DataFrame],
    model_type: str = "tree",
    seed: int = 42,
    verbose: bool = True,
) -> Union[np.ndarray, pd.DataFrame, object]:
    """
    Intelligently prepares a background dataset for SHAP based on model type.

    Strategies:
    - Tree: Higher sample cap (1000), uses Random Sampling (preserves data structure).
    - Other: Lower sample cap (100), uses K-Means (maximizes info density).
    """
    (n_rows, n_features) = X.shape
    if model_type == "tree":
        max_samples = 1000
        use_kmeans = False
    else:
        max_samples = 100
        use_kmeans = True
    if n_rows <= max_samples:
        verbose and logger.info(
            f"✓ Dataset small ({n_rows} <= {max_samples}). Using full data."
        )
        return X
    verbose and logger.info(
        f"⚡ Large dataset detected ({n_rows} rows). Optimization Strategy: {('K-Means' if use_kmeans else 'Random Sampling')}"
    )
    if use_kmeans:
        try:
            verbose and logger.info(
                f"   Summarizing to {max_samples} weighted centroids..."
            )
            return shap.kmeans(X, max_samples)
        except Exception as e:
            logger.warning(
                f"   K-Means failed ({str(e)}). Falling back to random sampling."
            )
            return shap.sample(X, max_samples, random_state=seed)
    else:
        verbose and logger.info(f"   Sampling {max_samples} random rows...")
        return shap.sample(X, max_samples, random_state=seed)


def _get_class_mapping_from_encoder(encoder):
    """
    Returns a DataFrame showing the encoding:
      index → original class label

    Parameters
    ----------
    encoder : LabelEncoder
        The fitted LabelEncoder object (must have .classes_)
    """
    if encoder is None:
        return pd.DataFrame(columns=["index", "class"])
    if not hasattr(encoder, "classes_"):
        raise ValueError(
            "The provided encoder does not have .classes_ attribute. Was it fitted with LabelEncoder.fit() or fit_transform()?"
        )
    classes = encoder.classes_
    return pd.DataFrame({"index": range(len(classes)), "class": classes})


def train_cla_lightgbm(
    X: DataFrame, y: Union[DataSeries, NDArray, List], options=None
) -> Tuple[
    Any,
    DataFrame,
    Any,
    Any,
    Union[DataFrame, Dict],
    DataFrame,
    DataFrame,
    DataFrame,
    DataFrame,
    Dict,
]:
    options = options or {}
    n_estimators = options.get("n_estimators", 100)
    early_stopping = options.get("early_stopping", True)
    early_stopping_rounds = options.get("early_stopping_rounds", 10)
    max_depth = options.get("max_depth", -1)
    num_leaves = options.get("num_leaves", 31)
    learning_rate = options.get("learning_rate", 0.1)
    min_split_gain = options.get("min_split_gain", 0.0)
    min_child_weight = options.get("min_child_weight", 0.001)
    min_child_samples = options.get("min_child_samples", 20)
    colsample_bytree = options.get("colsample_bytree", 1.0)
    reg_alpha = options.get("reg_alpha", 0.0)
    reg_lambda = options.get("reg_lambda", 0.0)
    use_bagging = options.get("use_bagging", False)
    subsample = options.get("subsample", 1.0)
    subsample_freq = options.get("subsample_freq", 0)
    auto_split = options.get("auto_split", True)
    test_val_size = options.get("test_val_size", 15) / 100
    shuffle_split = options.get("shuffle_split", True)
    stratify_split = options.get("stratify_split", True)
    retrain_on_full = options.get("retrain_on_full", False)
    custom_average_strategy = options.get("custom_average_strategy", "auto")
    use_cross_validation = options.get("use_cross_validation", False)
    cv_folds = options.get("cv_folds", 5)
    use_hpo = options.get("use_hyperparameter_optimization", False)
    optimization_metric = options.get("optimization_metric", "F1 Score")
    optimization_method = options.get("optimization_method", "Tree-structured Parzen")
    optimization_iterations = options.get("optimization_iterations", 50)
    pos_label_option = options.get("pos_label", "").strip()
    if pos_label_option == "":
        pos_label_option = None
    return_shap_explainer = options.get("return_shap_explainer", False)
    use_shap_sampler = options.get("use_shap_sampler", False)
    shap_feature_perturbation = options.get(
        "shap_feature_perturbation", "Interventional"
    )
    metrics_as = options.get("metrics_as", "Dataframe")
    n_jobs_str = options.get("n_jobs", "1")
    random_state = options.get("random_state", 42)
    activate_caching = options.get("activate_caching", False)
    verbose = options.get("verbose", True)
    n_jobs_int = -1 if n_jobs_str == "All" else int(n_jobs_str)
    skip_computation = False
    Model = None
    Metrics = pd.DataFrame()
    CV_Metrics = pd.DataFrame()
    Features_Importance = pd.DataFrame()
    Label_Encoder = None
    SHAP = None
    HPO_Trials = pd.DataFrame()
    HPO_Best = None
    accuracy = None
    precision = None
    recall = None
    f1 = None
    roc_auc = None
    (n_samples, n_features, sparsity, is_sparse) = _get_shape_and_sparsity(X)
    if activate_caching:
        verbose and logger.info(f"Caching is activate")
        data_hasher = _UniversalDatasetHasher(n_samples, verbose=verbose)
        X_hash = data_hasher.hash_data(X).hash
        y_hash = data_hasher.hash_data(y).hash
        all_hash_base_text = f"HASH BASE TEXT LIGHTGBMPandas Version {pd.__version__}POLARS Version {pl.__version__}Numpy Version {np.__version__}Scikit Learn Version {sklearn.__version__}Scipy Version {scipy.__version__}{('SHAP Version ' + shap.__version__ if return_shap_explainer else 'NO SHAP Version')}{X_hash}{y_hash}{n_estimators}{early_stopping}{early_stopping_rounds}{max_depth}{learning_rate}{reg_lambda}{reg_alpha}{min_child_weight}{subsample}{colsample_bytree}{num_leaves}{min_split_gain}{min_child_samples}{use_bagging}{subsample_freq}{('Use HPO' if use_hpo else 'No HPO')}{(optimization_metric if use_hpo else 'No HPO Metric')}{(optimization_method if use_hpo else 'No HPO Method')}{(optimization_iterations if use_hpo else 'No HPO Iter')}{(cv_folds if use_cross_validation else 'No CV')}{('Auto Split' if auto_split else test_val_size)}{shuffle_split}{stratify_split}{return_shap_explainer}{shap_feature_perturbation}{use_shap_sampler}{random_state}{(pos_label_option if pos_label_option else 'default_pos')}{custom_average_strategy}"
        all_hash = hashlib.sha256(all_hash_base_text.encode("utf-8")).hexdigest()
        verbose and logger.info(f"Hash was computed: {all_hash}")
        temp_folder = Path(tempfile.gettempdir())
        cache_folder = temp_folder / "coded-flows-cache"
        cache_folder.mkdir(parents=True, exist_ok=True)
        model_path = cache_folder / f"{all_hash}.txt"
        metrics_dict_path = cache_folder / f"metrics_{all_hash}.json"
        metrics_df_path = cache_folder / f"metrics_{all_hash}.parquet"
        cv_metrics_path = cache_folder / f"cv_metrics_{all_hash}.parquet"
        hpo_trials_path = cache_folder / f"hpo_trials_{all_hash}.parquet"
        hpo_best_params_path = cache_folder / f"hpo_best_params_{all_hash}.json"
        features_importance_path = (
            cache_folder / f"features_importance_{all_hash}.parquet"
        )
        prediction_set_path = cache_folder / f"prediction_set_{all_hash}.parquet"
        shap_path = cache_folder / f"{all_hash}.shap"
        label_encoder_path = cache_folder / f"{all_hash}.encoder"
        skip_computation = model_path.is_file()
    if not skip_computation:
        if hasattr(y, "nunique"):
            n_classes = y.nunique()
        elif hasattr(y, "n_unique"):
            n_classes = y.n_unique()
        else:
            n_classes = len(np.unique(y))
        is_multiclass = n_classes > 2
        features_names = X.columns if hasattr(X, "columns") else None
        shap_feature_names = _ensure_feature_names(X)
        Label_Encoder = LabelEncoder()
        y = Label_Encoder.fit_transform(y)
        is_unbalanced = _has_class_imbalance(y)
        eval_metric = "multi_logloss" if is_multiclass else "binary_logloss"
        objective = "multiclass" if is_multiclass else "binary"
        is_unbalance = True if is_unbalanced and (not is_multiclass) else False
        class_weight = "balanced" if is_unbalanced and is_multiclass else None
        fixed_test_split = None if auto_split else test_val_size
        (X_train, X_test, y_train, y_test, val_ratio) = _smart_split(
            n_samples,
            X,
            y,
            random_state=random_state,
            shuffle=shuffle_split,
            stratify=y if stratify_split else None,
            fixed_test_split=fixed_test_split,
            verbose=verbose,
        )
        if custom_average_strategy == "auto":
            metric_average_strategy = _get_best_metric_average_strategy(y_test)
        else:
            metric_average_strategy = custom_average_strategy
        effective_pos_label = None
        if metric_average_strategy == "binary":
            unique_classes = np.unique(y_train)
            if pos_label_option is not None:
                if pos_label_option in unique_classes:
                    effective_pos_label = pos_label_option
                else:
                    try:
                        as_int = int(pos_label_option)
                        if as_int in unique_classes:
                            effective_pos_label = as_int
                    except ValueError:
                        pass
            elif 1 in unique_classes:
                effective_pos_label = 1
            elif "1" in unique_classes:
                effective_pos_label = "1"
            if effective_pos_label is not None:
                verbose and logger.info(f"Using positive label: {effective_pos_label}")
            elif effective_pos_label is None and metric_average_strategy == "binary":
                error_message = 'The target appears to be binary, but no positive label was provided and no "1" class exists in the label set.'
                verbose and logger.error(error_message)
                raise ValueError(error_message)
        if use_hpo:
            verbose and logger.info(f"Performing Hyperparameters Optimization")
            constant_hyperparameters = {
                "is_unbalance": is_unbalance,
                "class_weight": class_weight,
                "use_bagging": use_bagging,
                "objective": objective,
            }
            (HPO_Best, HPO_Trials) = _hyperparameters_optimization(
                X_train,
                y_train,
                constant_hyperparameters,
                optimization_metric,
                metric_average_strategy,
                val_ratio,
                shuffle_split,
                stratify_split,
                use_cross_validation,
                cv_folds,
                optimization_iterations,
                "maximize",
                optimization_method,
                random_state,
                n_jobs_int,
                verbose=verbose,
                pos_label=effective_pos_label,
            )
            HPO_Trials = _normalize_hpo_df(HPO_Trials)
            n_estimators = HPO_Best["n_estimators"]
            max_depth = HPO_Best["max_depth"]
            num_leaves = HPO_Best["num_leaves"]
            learning_rate = HPO_Best["learning_rate"]
            min_split_gain = HPO_Best["min_split_gain"]
            min_child_weight = HPO_Best["min_child_weight"]
            min_child_samples = HPO_Best["min_child_samples"]
            colsample_bytree = HPO_Best["colsample_bytree"]
            reg_alpha = HPO_Best["reg_alpha"]
            reg_lambda = HPO_Best["reg_lambda"]
            subsample = HPO_Best.get("subsample", 1)
            subsample_freq = HPO_Best.get("subsample_freq", 0.0)
        model_params = {}
        model_params["n_estimators"] = n_estimators
        model_params["max_depth"] = max_depth
        model_params["num_leaves"] = num_leaves
        model_params["learning_rate"] = learning_rate
        model_params["min_split_gain"] = min_split_gain
        model_params["min_child_weight"] = min_child_weight
        model_params["min_child_samples"] = min_child_samples
        model_params["colsample_bytree"] = colsample_bytree
        model_params["reg_alpha"] = reg_alpha
        model_params["reg_lambda"] = reg_lambda
        model_params["subsample"] = subsample if use_bagging else 1.0
        model_params["subsample_freq"] = subsample_freq if use_bagging else 0
        Model = LGBMClassifier(
            **model_params,
            objective=objective,
            class_weight=class_weight,
            is_unbalance=is_unbalance,
            random_state=random_state,
            n_jobs=n_jobs_int,
            verbosity=-1,
        )
        if early_stopping and (not use_hpo):
            (X_train, X_val, y_train, y_val) = train_test_split(
                X_train,
                y_train,
                test_size=val_ratio,
                random_state=random_state,
                stratify=y_train if stratify_split else None,
                shuffle=shuffle_split,
            )
            callbacks = [
                early_stopping_call(
                    stopping_rounds=early_stopping_rounds, verbose=False
                )
            ]
            Model.fit(
                X_train,
                y_train,
                eval_set=[(X_val, y_val)],
                eval_metric=eval_metric,
                callbacks=callbacks,
            )
            model_params["n_estimators"] = Model.best_iteration_
        else:
            Model.fit(X_train, y_train)
        if use_cross_validation and (not use_hpo):
            verbose and logger.info(
                f"Using Cross-Validation to measure performance metrics"
            )
            CV_Model = LGBMClassifier(
                **model_params,
                objective=objective,
                class_weight=class_weight,
                is_unbalance=is_unbalance,
                random_state=random_state,
                n_jobs=n_jobs_int,
                verbosity=-1,
            )
            CV_Metrics = _perform_cross_validation(
                CV_Model,
                X_train,
                y_train,
                cv_folds,
                metric_average_strategy,
                shuffle_split,
                random_state,
                n_jobs_int,
                verbose,
                pos_label=effective_pos_label,
            )
        y_pred = Model.predict(X_test)
        if is_multiclass:
            y_score = Model.predict_proba(X_test)
        elif effective_pos_label is not None:
            try:
                pos_idx = list(Model.classes_).index(effective_pos_label)
                y_score = Model.predict_proba(X_test)[:, pos_idx]
            except ValueError:
                y_score = Model.predict_proba(X_test)[:, 1]
        else:
            y_score = Model.predict_proba(X_test)[:, 1]
        score_params = {"average": metric_average_strategy, "zero_division": 0}
        if effective_pos_label:
            score_params["pos_label"] = effective_pos_label
        accuracy = accuracy_score(y_test, y_pred)
        precision = precision_score(y_test, y_pred, **score_params)
        recall = recall_score(y_test, y_pred, **score_params)
        f1 = f1_score(y_test, y_pred, **score_params)
        if is_multiclass:
            roc_auc = roc_auc_score(
                y_test, y_score, multi_class="ovr", average=metric_average_strategy
            )
        else:
            roc_auc = roc_auc_score(y_test, y_score)
        if metrics_as == "Dataframe":
            Metrics = pd.DataFrame(
                {
                    "Metric": [
                        "Accuracy",
                        "Precision",
                        "Recall",
                        "F1-Score",
                        "ROC AUC",
                    ],
                    "Value": [accuracy, precision, recall, f1, roc_auc],
                }
            )
        else:
            Metrics = {
                "Accuracy": accuracy,
                "Precision": precision,
                "Recall": recall,
                "F1-Score": f1,
                "ROC AUC": roc_auc,
            }
        verbose and logger.info(f"Accuracy  : {accuracy:.4f}")
        verbose and logger.info(f"Precision : {precision:.4f}")
        verbose and logger.info(f"Recall    : {recall:.4f}")
        verbose and logger.info(f"F1-Score  : {f1:.4f}")
        verbose and logger.info(f"ROC-AUC   : {roc_auc:.4f}")
        Prediction_Set = _combine_test_data(
            X_test, y_test, y_pred, y_score, Model.classes_, features_names
        )
        verbose and logger.info(f"Prediction Set created")
        if retrain_on_full:
            verbose and logger.info(
                "Retraining model on full dataset for production deployment"
            )
            Model.fit(X, y)
            verbose and logger.info(
                "Model successfully retrained on full dataset. Reported metrics remain from original held-out test set."
            )
        Features_Importance = _get_feature_importance(Model, features_names)
        verbose and logger.info(f"Features Importance computed")
        if return_shap_explainer:
            if shap_feature_perturbation == "Interventional":
                SHAP = shap.TreeExplainer(
                    Model.booster_,
                    (
                        _smart_shap_background(
                            X if retrain_on_full else X_train,
                            model_type="tree",
                            seed=random_state,
                            verbose=verbose,
                        )
                        if use_shap_sampler
                        else X if retrain_on_full else X_train
                    ),
                    feature_names=shap_feature_names,
                )
            else:
                SHAP = shap.TreeExplainer(
                    Model.booster_,
                    feature_names=shap_feature_names,
                    feature_perturbation="tree_path_dependent",
                )
            verbose and logger.info(f"SHAP explainer generated")
        if activate_caching:
            verbose and logger.info(f"Caching output elements")
            Model.booster_.save_model(model_path)
            if isinstance(Metrics, dict):
                with metrics_dict_path.open("w", encoding="utf-8") as f:
                    json.dump(Metrics, f, ensure_ascii=False, indent=4)
            else:
                Metrics.to_parquet(metrics_df_path)
            if use_cross_validation and (not use_hpo):
                CV_Metrics.to_parquet(cv_metrics_path)
            if use_hpo:
                HPO_Trials.to_parquet(hpo_trials_path)
                with hpo_best_params_path.open("w", encoding="utf-8") as f:
                    json.dump(HPO_Best, f, ensure_ascii=False, indent=4)
            Features_Importance.to_parquet(features_importance_path)
            Prediction_Set.to_parquet(prediction_set_path)
            if return_shap_explainer:
                with shap_path.open("wb") as f:
                    joblib.dump(SHAP, f)
            joblib.dump(Label_Encoder, label_encoder_path)
            verbose and logger.info(f"Caching done")
    else:
        verbose and logger.info(f"Skipping computations and loading cached elements")
        Model = Booster(model_file=str(model_path))
        verbose and logger.info(f"Model loaded")
        if metrics_dict_path.is_file():
            with metrics_dict_path.open("r", encoding="utf-8") as f:
                Metrics = json.load(f)
        else:
            Metrics = pd.read_parquet(metrics_df_path)
        verbose and logger.info(f"Metrics loaded")
        if use_cross_validation and (not use_hpo):
            CV_Metrics = pd.read_parquet(cv_metrics_path)
            verbose and logger.info(f"Cross Validation metrics loaded")
        if use_hpo:
            HPO_Trials = pd.read_parquet(hpo_trials_path)
            with hpo_best_params_path.open("r", encoding="utf-8") as f:
                HPO_Best = json.load(f)
            verbose and logger.info(
                f"Hyperparameters Optimization trials and best params loaded"
            )
        Features_Importance = pd.read_parquet(features_importance_path)
        verbose and logger.info(f"Features Importance loaded")
        Prediction_Set = pd.read_parquet(prediction_set_path)
        verbose and logger.info(f"Prediction Set loaded")
        if return_shap_explainer:
            with shap_path.open("rb") as f:
                SHAP = joblib.load(f)
            verbose and logger.info(f"SHAP Explainer loaded")
        Label_Encoder = joblib.load(label_encoder_path)
        verbose and logger.info(f"Label Encoder loaded")
    Model_Classes = _get_class_mapping_from_encoder(Label_Encoder)
    return (
        Model,
        Model_Classes,
        SHAP,
        Label_Encoder,
        Metrics,
        CV_Metrics,
        Features_Importance,
        Prediction_Set,
        HPO_Trials,
        HPO_Best,
    )

Brick Info

version v0.1.4
python 3.11, 3.12, 3.13
requirements
  • shap>=0.47.0
  • scikit-learn
  • pandas
  • numpy
  • lightgbm
  • torch
  • numba>=0.56.0
  • shap
  • cmaes
  • optuna
  • scipy
  • polars
  • xxhash