Cla. Random Forest

Train a Random Forest classification model with configurable trees, depth, and sampling strategies.

Cla. Random Forest

Processing

This brick trains a classification model using the Random Forest algorithm. It is used to predict categorical outcomes (e.g., "Yes/No", "Spam/Not Spam", or "High/Medium/Low Risk") based on historical data.

The brick processes your data by building many "decision trees," where each tree makes a prediction based on a random subset of data and features. The final prediction is determined by the majority vote of these trees. This "ensemble" approach makes the model highly accurate and resistant to overfitting.

Key capabilities include:

  • Automatic Data Splitting: Separates data into training and testing sets to ensure fair evaluation.
  • Hyperparameter Optimization: Can automatically hunt for the best settings (like tree depth or number of trees) to maximize performance.
  • Feature Importance: Identifies which columns in your data had the biggest impact on the prediction.
  • Cross-Validation: optionally checks the model's stability across multiple splits of the data.

Inputs

X
The features dataset containing the information used to make predictions. This is typically a DataFrame where each row is an example (e.g., a customer) and columns are attributes (e.g., age, spending, location).
y
The target labels. This contains the actual answers or categories you want the model to learn to predict (e.g., a column containing "Churned" or "Active").

Inputs Types

Input Types
X DataFrame
y DataSeries, NDarray, List

You can check the list of supported types here: Available Type Hints.

Outputs

Model
The trained Random Forest classifier object. This can be saved or used immediately in subsequent bricks to make predictions on new data.
Model Classes
A mapping showing the internal index used by the model and the corresponding class label (e.g., 0 = "No", 1 = "Yes").
SHAP
A SHAP explainer object used for interpreting the model's decisions. This is only generated if the "SHAP Explainer" option is enabled.
Metrics
A summary of the model's performance on the test set, including scores like Accuracy, Precision, Recall, and F1-Score.
CV Metrics
Detailed performance statistics from Cross-Validation (if enabled), showing the mean and standard deviation of scores across different data folds.
Features Importance
A ranking of your input columns based on how useful they were in making accurate predictions.
Prediction Set
A copy of the test dataset that includes the model's predictions, the actual true labels, and the calculated probabilities for each class. Useful for debugging specific errors.
HPO Trials
A history of all attempts made during Hyperparameter Optimization (if enabled), showing which settings were tried and their resulting scores.
HPO Best
A dictionary containing the best combination of parameters found during the optimization process.

The Prediction Set output contains the following specific data fields:

  • feature_{name}: The original input features used for the prediction.
  • proba (Binary): The probability of the positive class (0.0 to 1.0).
  • proba_{class_name} (Multiclass): The probability for each specific class.
  • y_true: The actual known label from the test set.
  • y_pred: The label predicted by the model.
  • is_false_prediction: A boolean (True/False) indicating if the model got it wrong.

Outputs Types

Output Types
Model Any
Model Classes DataFrame
SHAP Any
Metrics DataFrame, Dict
CV Metrics DataFrame
Features Importance DataFrame
Prediction Set DataFrame
HPO Trials DataFrame
HPO Best Dict x

You can check the list of supported types here: Available Type Hints.

Options

The Cla. Random Forest brick contains some changeable options:

Number of Trees
The number of decision trees to build in the forest. Generally, more trees improve performance and stability but increase training time.
Max Depth (0 = Unlimited)
The maximum depth of each tree.
  • 0: The tree grows until all leaves are pure (can lead to complex, overfitted models).
  • Values > 0: Limits how deep the tree can grow to generalize better.
Feature Sampling
Determines how many features (columns) to consider when looking for the best split at each node.
  • Automatic 30%: Uses 30% of features.
  • Automatic 50%: Uses 50% of features.
  • Square root: Uses the square root of the total feature count (standard default).
  • Logarithm: Uses the base-2 logarithm of the feature count.
  • None: Considers all features at every split.
Min Samples per Leaf
The minimum number of data points required to be at a leaf node. Increasing this number creates smoother model boundaries and reduces overfitting.
Auto Split Data
If enabled, automatically splits your X and y data into training and testing sets based on dataset size.
Shuffle Split
Whether to shuffle the data randomly before splitting it into training and testing sets.
Stratify Split
If enabled, ensures that the training and testing sets have the same proportion of class labels (e.g., same % of "Yes" and "No") as the original data.
Test/Validation Set %
The percentage of data to hold back for testing/validation (ignored if Auto Split Data is on).
Retrain On Full Data
If enabled, the model performs validation on a split, but the final Model output is re-trained on 100% of the provided data. This is recommended for production deployment.
Average Strategy
How to calculate metrics (like F1-Score) for multiclass problems.
  • auto: Automatically selects based on class balance.
  • binary: Only for two classes.
  • micro: Calculate metrics globally by counting total true positives, false negatives and false positives.
  • macro: Calculate metrics for each label, and find their unweighted mean.
  • weighted: Calculate metrics for each label, and find their average weighted by support (the number of true instances for each label).
Enable Cross-Validation
If enabled, splits the data into multiple folds (e.g., 5 parts) and trains/tests 5 times to get a more robust performance estimate.
Number of CV Folds
The number of folds to use for Cross-Validation (e.g., 5 or 10).
Hyperparameter Optim.
If enabled, the brick uses Optuna to automatically search for the best configuration (trees, depth, etc.) instead of using the manual settings.
Optimization Metric
The specific score the optimizer tries to maximize.
  • F1 Score: Balances precision and recall.
  • Accuracy: Ratio of correct predictions.
  • Precision: Ability to not label negative samples as positive.
  • Recall: Ability to find all positive samples.
  • ROC-AUC: Ability to distinguish between classes.
Optimization Method
The algorithm used to search for the best parameters.
  • Tree-structured Parzen: A Bayesian optimization method that models good vs bad parameter regions using probability distributions and prioritizes sampling where success is statistically more likely.
  • Gaussian Process: ses a probabilistic regression model (Gaussian Process) to estimate performance uncertainty and selects new trials using acquisition functions.
  • CMA-ES: An evolutionary strategy that adapts the covariance matrix of a multivariate normal distribution to efficiently search complex, non-linear, non-convex spaces.
  • Random Sobol Search: Uses low-discrepancy quasi-random sequences to ensure uniform coverage of the parameter space, avoiding clustering and gaps.
  • Random Search: Uniform random sampling of parameter configurations without learning or feedback between iterations.
Optimization Iterations
The number of different parameter combinations to try during optimization.
Positive Label (Binary Only)
If doing binary classification (e.g., "Yes"/"No"), specify which value represents the "Positive" class (the one you are detecting, e.g., "Yes").
Metrics as
Choose the output format for the Metrics variable.
  • Dataframe: Returns a table.
  • Dictionary: Returns a JSON-like object.
SHAP Explainer
If enabled, generates a SHAP object for advanced interpretability.
SHAP Sampler
Uses a subset of data to speed up SHAP background calculation.
SHAP Feature Perturbation
Technical method for SHAP calculation.
  • Interventional: Breaks feature dependencies (safer causal interpretation).
  • Tree Path Dependent: Follows tree structure (faster).
Number of Jobs
The number of CPU cores to use. "All" uses all available cores.
Random State
A number used to seed the random number generator. Using the same number ensures results are reproducible.
Brick Caching
If enabled, results are cached to disk to speed up subsequent runs with identical inputs.
Verbose Logging
If enabled, prints detailed progress logs to the console.
import logging
import warnings
import shap
import json
import xxhash
import hashlib
import tempfile
import sklearn
import scipy
import joblib
import numpy as np
import pandas as pd
import polars as pl
from pathlib import Path
from scipy import sparse
from optuna.samplers import (
    TPESampler,
    RandomSampler,
    GPSampler,
    CmaEsSampler,
    QMCSampler,
)
import optuna
from optuna import Study
from optuna.trial import FrozenTrial
from optuna.pruners import HyperbandPruner
from optuna import create_study
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_validate, StratifiedKFold
from sklearn.metrics import (
    accuracy_score,
    precision_score,
    recall_score,
    f1_score,
    roc_auc_score,
    make_scorer,
)
from dataclasses import dataclass
from datetime import datetime
from coded_flows.types import (
    Union,
    Dict,
    List,
    Tuple,
    NDArray,
    DataFrame,
    DataSeries,
    Any,
    Tuple,
)
from coded_flows.utils import CodedFlowsLogger

logger = CodedFlowsLogger(name="Cla. Random Forest", level=logging.INFO)
optuna.logging.set_verbosity(optuna.logging.ERROR)
warnings.filterwarnings("ignore", category=optuna.exceptions.ExperimentalWarning)
DataType = Union[
    pd.DataFrame, pl.DataFrame, np.ndarray, sparse.spmatrix, pd.Series, pl.Series
]


@dataclass
class _DatasetFingerprint:
    """Lightweight fingerprint of a dataset."""

    hash: str
    shape: tuple
    computed_at: str
    data_type: str
    method: str


class _UniversalDatasetHasher:
    """
    High-performance dataset hasher optimizing for zero-copy operations
    and native backend execution (C/Rust).
    """

    def __init__(
        self,
        data_size: int,
        method: str = "auto",
        sample_size: int = 100000,
        verbose: bool = False,
    ):
        self.method = method
        self.sample_size = sample_size
        self.data_size = data_size
        self.verbose = verbose

    def hash_data(self, data: DataType) -> _DatasetFingerprint:
        """
        Main entry point: hash any supported data format.
        Auto-detects format and applies optimal strategy.
        """
        if isinstance(data, pd.DataFrame):
            return self._hash_pandas(data)
        elif isinstance(data, pl.DataFrame):
            return self._hash_polars(data)
        elif isinstance(data, pd.Series):
            return self._hash_pandas_series(data)
        elif isinstance(data, pl.Series):
            return self._hash_polars_series(data)
        elif isinstance(data, np.ndarray):
            return self._hash_numpy(data)
        elif sparse.issparse(data):
            return self._hash_sparse(data)
        else:
            raise TypeError(f"Unsupported data type: {type(data)}")

    def _hash_pandas(self, df: pd.DataFrame) -> _DatasetFingerprint:
        """
        Optimized Pandas hashing using pd.util.hash_pandas_object.
        Avoids object-to-string conversion overhead.
        """
        method = self._determine_method(self.data_size, self.method)
        self.verbose and logger.info(
            f"Hashing Pandas: {self.data_size:,} rows - {method}"
        )
        target_df = df
        if method == "sampled":
            target_df = self._get_pandas_sample(df)
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {
                "columns": df.columns.tolist(),
                "dtypes": {k: str(v) for (k, v) in df.dtypes.items()},
                "shape": df.shape,
            },
        )
        try:
            row_hashes = pd.util.hash_pandas_object(target_df, index=False)
            hasher.update(memoryview(row_hashes.values))
        except Exception as e:
            self.verbose and logger.warning(
                f"Fast hash failed, falling back to slow hash: {e}"
            )
            self._hash_pandas_fallback(hasher, target_df)
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=df.shape,
            computed_at=datetime.now().isoformat(),
            data_type="pandas",
            method=method,
        )

    def _get_pandas_sample(self, df: pd.DataFrame) -> pd.DataFrame:
        """Deterministic slicing for sampling (Zero randomness)."""
        if self.data_size <= self.sample_size:
            return df
        chunk = self.sample_size // 3
        head = df.iloc[:chunk]
        mid_idx = self.data_size // 2
        mid = df.iloc[mid_idx : mid_idx + chunk]
        tail = df.iloc[-chunk:]
        return pd.concat([head, mid, tail])

    def _hash_pandas_fallback(self, hasher, df: pd.DataFrame):
        """Legacy fallback for complex object types."""
        for col in df.columns:
            val = df[col].astype(str).values
            hasher.update(val.astype(np.bytes_).tobytes())

    def _hash_polars(self, df: pl.DataFrame) -> _DatasetFingerprint:
        """
        Optimized Polars hashing using native Rust execution.
        """
        method = self._determine_method(self.data_size, self.method)
        self.verbose and logger.info(
            f"Hashing Polars: {self.data_size:,} rows - {method}"
        )
        target_df = df
        if method == "sampled" and self.data_size > self.sample_size:
            indices = self._get_sample_indices(self.data_size, self.sample_size)
            target_df = df.gather(indices)
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {
                "columns": df.columns,
                "dtypes": [str(t) for t in df.dtypes],
                "shape": df.shape,
            },
        )
        row_hashes = target_df.hash_rows()
        hasher.update(memoryview(row_hashes.to_numpy()))
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=df.shape,
            computed_at=datetime.now().isoformat(),
            data_type="polars",
            method=method,
        )

    def _hash_pandas_series(self, series: pd.Series) -> _DatasetFingerprint:
        """Hash Pandas Series using the fastest vectorized method."""
        self.verbose and logger.info(f"Hashing Pandas Series: {self.data_size:,} rows")
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {
                "name": series.name if series.name else "None",
                "dtype": str(series.dtype),
                "shape": series.shape,
            },
        )
        try:
            row_hashes = pd.util.hash_pandas_object(series, index=False)
            hasher.update(memoryview(row_hashes.values))
        except Exception as e:
            self.verbose and logger.warning(f"Series hash failed, falling back: {e}")
            hasher.update(memoryview(series.astype(str).values.tobytes()))
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=series.shape,
            computed_at=datetime.now().isoformat(),
            data_type="pandas_series",
            method="full",
        )

    def _hash_polars_series(self, series: pl.Series) -> _DatasetFingerprint:
        """Hash Polars Series using native Polars expressions."""
        self.verbose and logger.info(f"Hashing Polars Series: {self.data_size:,} rows")
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {"name": series.name, "dtype": str(series.dtype), "shape": series.shape},
        )
        try:
            row_hashes = series.hash()
            hasher.update(memoryview(row_hashes.to_numpy()))
        except Exception as e:
            self.verbose and logger.warning(
                f"Polars series native hash failed. Falling back."
            )
            hasher.update(str(series.to_list()).encode())
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=series.shape,
            computed_at=datetime.now().isoformat(),
            data_type="polars_series",
            method="full",
        )

    def _hash_numpy(self, arr: np.ndarray) -> _DatasetFingerprint:
        """
        Optimized NumPy hashing using Buffer Protocol (Zero-Copy).
        """
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher,
            {"shape": arr.shape, "dtype": str(arr.dtype), "strides": arr.strides},
        )
        if arr.flags["C_CONTIGUOUS"] or arr.flags["F_CONTIGUOUS"]:
            hasher.update(memoryview(arr))
        else:
            hasher.update(memoryview(np.ascontiguousarray(arr)))
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=arr.shape,
            computed_at=datetime.now().isoformat(),
            data_type="numpy",
            method="full",
        )

    def _hash_sparse(self, matrix: sparse.spmatrix) -> _DatasetFingerprint:
        """
        Optimized sparse hashing. Hashes underlying data arrays directly.
        """
        if not (sparse.isspmatrix_csr(matrix) or sparse.isspmatrix_csc(matrix)):
            matrix = matrix.tocsr()
        hasher = xxhash.xxh128()
        self._hash_schema(
            hasher, {"shape": matrix.shape, "format": matrix.format, "nnz": matrix.nnz}
        )
        hasher.update(memoryview(matrix.data))
        hasher.update(memoryview(matrix.indices))
        hasher.update(memoryview(matrix.indptr))
        return _DatasetFingerprint(
            hash=hasher.hexdigest(),
            shape=matrix.shape,
            computed_at=datetime.now().isoformat(),
            data_type=f"sparse_{matrix.format}",
            method="sparse",
        )

    def _determine_method(self, rows: int, requested: str) -> str:
        if requested != "auto":
            return requested
        if rows < 5000000:
            return "full"
        return "sampled"

    def _hash_schema(self, hasher, schema: Dict[str, Any]):
        """Compact schema hashing."""
        hasher.update(
            json.dumps(schema, sort_keys=True, separators=(",", ":")).encode()
        )

    def _get_sample_indices(self, total_rows: int, sample_size: int) -> list:
        """Calculate indices for sampling without generating full range lists."""
        chunk = sample_size // 3
        indices = list(range(min(chunk, total_rows)))
        mid_start = max(0, total_rows // 2 - chunk // 2)
        mid_end = min(mid_start + chunk, total_rows)
        indices.extend(range(mid_start, mid_end))
        last_start = max(0, total_rows - chunk)
        indices.extend(range(last_start, total_rows))
        return sorted(list(set(indices)))


def _normalize_hpo_df(df):
    df = df.copy()
    param_cols = [c for c in df.columns if c.startswith("params_")]
    df[param_cols] = df[param_cols].astype("string[pyarrow]")
    return df


def _validate_numerical_data(data):
    """
    Validates if the input data (NumPy array, Pandas DataFrame/Series,
    Polars DataFrame/Series, or SciPy sparse matrix) contains only
    numerical (integer, float) or boolean values.

    Args:
        data: The input data structure to check.

    Raises:
        TypeError: If the input data contains non-numerical and non-boolean types.
        ValueError: If the input data is of an unsupported type.
    """
    if sparse.issparse(data):
        if not (
            np.issubdtype(data.dtype, np.number) or np.issubdtype(data.dtype, np.bool_)
        ):
            raise TypeError(
                f"Sparse matrix contains unsupported data type: {data.dtype}. Only numerical or boolean types are allowed."
            )
        return
    elif isinstance(data, np.ndarray):
        if not (
            np.issubdtype(data.dtype, np.number) or np.issubdtype(data.dtype, np.bool_)
        ):
            raise TypeError(
                f"NumPy array contains unsupported data type: {data.dtype}. Only numerical or boolean types are allowed."
            )
        return
    elif isinstance(data, (pd.DataFrame, pd.Series)):
        d_types = data.dtypes.apply(lambda x: x.kind)
        non_numerical_mask = ~d_types.isin(["i", "f", "b"])
        if non_numerical_mask.any():
            non_numerical_columns = (
                data.columns[non_numerical_mask].tolist()
                if isinstance(data, pd.DataFrame)
                else [data.name]
            )
            raise TypeError(
                f"Pandas {('DataFrame' if isinstance(data, pd.DataFrame) else 'Series')} contains non-numerical/boolean data. Offending column(s) and types: {data.dtypes[non_numerical_mask].to_dict()}"
            )
        return
    elif isinstance(data, (pl.DataFrame, pl.Series)):
        pl_numerical_types = [
            pl.Int8,
            pl.Int16,
            pl.Int32,
            pl.Int64,
            pl.UInt8,
            pl.UInt16,
            pl.UInt32,
            pl.UInt64,
            pl.Float32,
            pl.Float64,
            pl.Boolean,
        ]
        if isinstance(data, pl.DataFrame):
            for col, dtype in data.schema.items():
                if dtype not in pl_numerical_types:
                    raise TypeError(
                        f"Polars DataFrame column '{col}' has unsupported data type: {dtype}. Only numerical or boolean types are allowed."
                    )
        elif isinstance(data, pl.Series):
            if data.dtype not in pl_numerical_types:
                raise TypeError(
                    f"Polars Series has unsupported data type: {data.dtype}. Only numerical or boolean types are allowed."
                )
        return
    else:
        raise ValueError(
            f"Unsupported data type provided: {type(data)}. Function supports NumPy, Pandas, Polars, and SciPy sparse matrices."
        )


def _get_shape_and_sparsity(X: Any) -> Tuple[int, int, float, bool]:
    """
    Efficiently extracts shape and estimates sparsity without converting
    the entire dataset to numpy.
    """
    (n_samples, n_features) = (0, 0)
    is_sparse = False
    sparsity = 0.0
    if hasattr(X, "nnz") and hasattr(X, "shape"):
        (n_samples, n_features) = X.shape
        is_sparse = True
        sparsity = 1.0 - X.nnz / (n_samples * n_features)
        return (n_samples, n_features, sparsity, is_sparse)
    if hasattr(X, "height") and hasattr(X, "width"):
        (n_samples, n_features) = (X.height, X.width)
        return (n_samples, n_features, 0.0, False)
    if hasattr(X, "shape") and hasattr(X, "iloc"):
        (n_samples, n_features) = X.shape
        return (n_samples, n_features, 0.0, False)
    if isinstance(X, list):
        X = np.array(X)
    if hasattr(X, "shape"):
        (n_samples, n_features) = X.shape
        return (n_samples, n_features, 0.0, False)
    raise ValueError("Unsupported data type")


def _choose_class_weight(y):
    from collections import Counter

    counts = np.array(list(Counter(y).values()))
    n_min = counts.min()
    r = counts.max() / n_min
    if r <= 1.5:
        return None
    if r <= 10:
        return "balanced"
    if n_min >= 50:
        return "balanced_subsample"
    return "balanced"


def _smart_split(
    n_samples,
    X,
    y,
    *,
    random_state=42,
    shuffle=True,
    stratify=None,
    fixed_test_split=None,
    verbose=True,
):
    """
    Parameters
    ----------
    n_samples : int
        Number of samples in the dataset (len(X) or len(y))
    X : array-like
        Features
    y : array-like
        Target
    random_state : int
    shuffle : bool
    stratify : array-like or None
        For stratified splitting (recommended for classification)

    Returns
    -------
    If return_val=True  → X_train, X_val, X_test, y_train, y_val, y_test
    If return_val=False → X_train, X_test, y_train, y_test
    """
    if fixed_test_split:
        test_ratio = fixed_test_split
        val_ratio = fixed_test_split
    elif n_samples <= 1000:
        test_ratio = 0.2
        val_ratio = 0.1
    elif n_samples < 10000:
        test_ratio = 0.15
        val_ratio = 0.15
    elif n_samples < 100000:
        test_ratio = 0.1
        val_ratio = 0.1
    elif n_samples < 1000000:
        test_ratio = 0.05
        val_ratio = 0.05
    else:
        test_ratio = 0.01
        val_ratio = 0.01
    (X_train, X_test, y_train, y_test) = train_test_split(
        X,
        y,
        test_size=test_ratio,
        random_state=random_state,
        shuffle=shuffle,
        stratify=stratify,
    )
    val_size_in_train = val_ratio / (1 - test_ratio)
    verbose and logger.info(
        f"Split → Train: {1 - test_ratio:.2%} | Test: {test_ratio:.2%} (no validation set)"
    )
    return (X_train, X_test, y_train, y_test, val_size_in_train)


def _get_best_metric_average_strategy(y_true, balance_threshold: float = 0.5) -> str:
    """
    Analyzes y_true to determine the best averaging strategy.

    Args:
        y_true: Input array (Numpy array, Pandas Series, or Polars Series).
        balance_threshold: Float (0 to 1). If min_class_count / max_class_count
                           is below this, the data is considered imbalanced.

    Returns:
        str: 'binary', 'weighted', or 'macro'
    """
    counts = None
    if hasattr(y_true, "value_counts") and hasattr(y_true, "values"):
        counts = y_true.value_counts().values
    elif hasattr(y_true, "value_counts") and hasattr(y_true, "to_numpy"):
        vc = y_true.value_counts()
        if "count" in vc.columns:
            counts = vc["count"].to_numpy()
        else:
            counts = vc[:, 1].to_numpy()
    elif isinstance(y_true, np.ndarray):
        (_, counts) = np.unique(y_true, return_counts=True)
    else:
        (_, counts) = np.unique(np.array(y_true), return_counts=True)
    if counts is None or len(counts) == 0:
        raise ValueError("Input y_true appears to be empty.")
    n_classes = len(counts)
    if n_classes <= 2:
        return "binary"
    min_c = np.min(counts)
    max_c = np.max(counts)
    ratio = min_c / max_c
    if ratio < balance_threshold:
        return "weighted"
    else:
        return "macro"


def _ensure_feature_names(X, feature_names=None):
    if isinstance(X, pd.DataFrame):
        return list(X.columns)
    if isinstance(X, np.ndarray):
        if feature_names is None:
            feature_names = [f"feature_{i}" for i in range(X.shape[1])]
        return feature_names
    raise TypeError("X must be a pandas DataFrame or numpy ndarray")


def _perform_cross_validation(
    model,
    X,
    y,
    cv_folds,
    average_strategy,
    shuffle,
    random_state,
    n_jobs,
    verbose,
    pos_label=None,
) -> dict[str, Any]:
    """Perform cross-validation on the model."""
    verbose and logger.info(f"Performing {cv_folds}-fold cross-validation...")
    cv = StratifiedKFold(n_splits=cv_folds, shuffle=shuffle, random_state=random_state)
    if average_strategy == "binary":
        scoring = {
            "accuracy": "accuracy",
            "precision": make_scorer(
                precision_score, average="binary", pos_label=pos_label
            ),
            "recall": make_scorer(recall_score, average="binary", pos_label=pos_label),
            "f1": make_scorer(f1_score, average="binary", pos_label=pos_label),
            "roc_auc": "roc_auc",
        }
    else:
        average_strategy_suffix = f"_{average_strategy}"
        roc_average_strategy_suffix = (
            f"_{average_strategy}" if average_strategy == "weighted" else ""
        )
        roc_auc_ovr_suffix = "_ovr"
        scoring = (
            f"f1{average_strategy_suffix}",
            "accuracy",
            f"precision{average_strategy_suffix}",
            f"recall{average_strategy_suffix}",
            f"roc_auc{roc_auc_ovr_suffix}{roc_average_strategy_suffix}",
        )
    cv_results = cross_validate(
        model, X, y, cv=cv, scoring=scoring, return_train_score=True, n_jobs=n_jobs
    )

    def get_score_mean_std(metric_key):
        if metric_key in cv_results:
            return (cv_results[metric_key].mean(), cv_results[metric_key].std())
        return (0.0, 0.0)

    if average_strategy == "binary":
        (accuracy_mean, accuracy_std) = get_score_mean_std("test_accuracy")
        (precision_mean, precision_std) = get_score_mean_std("test_precision")
        (recall_mean, recall_std) = get_score_mean_std("test_recall")
        (f1_mean, f1_std) = get_score_mean_std("test_f1")
        (roc_auc_mean, roc_auc_std) = get_score_mean_std("test_roc_auc")
    else:
        (accuracy_mean, accuracy_std) = get_score_mean_std("test_accuracy")
        (precision_mean, precision_std) = get_score_mean_std(
            f"test_precision{average_strategy_suffix}"
        )
        (recall_mean, recall_std) = get_score_mean_std(
            f"test_recall{average_strategy_suffix}"
        )
        (f1_mean, f1_std) = get_score_mean_std(f"test_f1{average_strategy_suffix}")
        roc_key = f"test_roc_auc{roc_auc_ovr_suffix}{roc_average_strategy_suffix}"
        (roc_auc_mean, roc_auc_std) = get_score_mean_std(roc_key)
    verbose and logger.info(
        f"CV Accuracy  : {accuracy_mean:.4f} (+/- {accuracy_std:.4f})"
    )
    verbose and logger.info(
        f"CV Precision : {precision_mean:.4f} (+/- {precision_std:.4f})"
    )
    verbose and logger.info(f"CV Recall    : {recall_mean:.4f} (+/- {recall_std:.4f})")
    verbose and logger.info(f"CV F1 Score  : {f1_mean:.4f} (+/- {f1_std:.4f})")
    verbose and logger.info(
        f"CV ROC-AUC   : {roc_auc_mean:.4f} (+/- {roc_auc_std:.4f})"
    )
    CV_metrics = pd.DataFrame(
        {
            "Metric": ["Accuracy", "Precision", "Recall", "F1-Score", "ROC AUC"],
            "Mean": [accuracy_mean, precision_mean, recall_mean, f1_mean, roc_auc_mean],
            "Std": [accuracy_std, precision_std, recall_std, f1_std, roc_auc_std],
        }
    )
    return CV_metrics


def _compute_score(model, X, y, metric, average_strategy, pos_label=None):
    score_params = {"average": average_strategy, "zero_division": 0}
    y_pred = model.predict(X)
    if average_strategy != "binary":
        y_score = model.predict_proba(X)
    else:
        score_params["pos_label"] = pos_label
        if pos_label is not None:
            classes = list(model.classes_)
            try:
                pos_idx = classes.index(pos_label)
            except ValueError:
                pos_idx = 1 if len(classes) > 1 else 0
            y_score = model.predict_proba(X)[:, pos_idx]
        else:
            y_score = model.predict_proba(X)[:, 1]
    if metric == "Accuracy":
        score = accuracy_score(y, y_pred)
    elif metric == "Precision":
        score = precision_score(y, y_pred, **score_params)
    elif metric == "Recall":
        score = recall_score(y, y_pred, **score_params)
    elif metric == "F1 Score":
        score = f1_score(y, y_pred, **score_params)
    elif metric == "ROC-AUC":
        if average_strategy != "binary":
            score = roc_auc_score(
                y, y_score, multi_class="ovr", average=average_strategy
            )
        else:
            score = roc_auc_score(y, y_score)
    return score


def _get_cv_scoring_object(metric, average_strategy, pos_label=None):
    """
    Returns a scoring object (string or callable) suitable for cross_validate.
    Used during HPO.
    """
    if average_strategy == "binary":
        if metric == "F1 Score":
            return make_scorer(f1_score, average="binary", pos_label=pos_label)
        elif metric == "Accuracy":
            return "accuracy"
        elif metric == "Precision":
            return make_scorer(precision_score, average="binary", pos_label=pos_label)
        elif metric == "Recall":
            return make_scorer(recall_score, average="binary", pos_label=pos_label)
        elif metric == "ROC-AUC":
            return "roc_auc"
    else:
        average_strategy_suffix = f"_{average_strategy}"
        roc_auc_ovr_suffix = "_ovr"
        roc_average_strategy_suffix = (
            f"_{average_strategy}" if average_strategy == "weighted" else ""
        )
        if metric == "F1 Score":
            return f"f1{average_strategy_suffix}"
        elif metric == "Accuracy":
            return "accuracy"
        elif metric == "Precision":
            return f"precision{average_strategy_suffix}"
        elif metric == "Recall":
            return f"recall{average_strategy_suffix}"
        elif metric == "ROC-AUC":
            return f"roc_auc{roc_auc_ovr_suffix}{roc_average_strategy_suffix}"


def _hyperparameters_optimization(
    X,
    y,
    constant_hyperparameters,
    optimization_metric,
    metric_average_strategy,
    val_ratio,
    shuffle_split,
    stratify_split,
    use_cross_val,
    cv_folds,
    n_trials=50,
    strategy="maximize",
    sampler="Tree-structured Parzen",
    seed=None,
    n_jobs=-1,
    verbose=False,
    pos_label=None,
):
    direction = "maximize" if strategy.lower() == "maximize" else "minimize"
    sampler_map = {
        "Tree-structured Parzen": TPESampler(seed=seed),
        "Gaussian Process": GPSampler(seed=seed),
        "CMA-ES": CmaEsSampler(seed=seed),
        "Random Search": RandomSampler(seed=seed),
        "Random Sobol Search": QMCSampler(seed=seed),
    }
    if sampler in sampler_map:
        chosen_sampler = sampler_map[sampler]
    else:
        logger.warning(f"Sampler '{sampler}' not recognized → falling back to TPE")
        chosen_sampler = TPESampler(seed=seed)
    chosen_pruner = HyperbandPruner()
    if use_cross_val:
        cv = StratifiedKFold(
            n_splits=cv_folds, shuffle=shuffle_split, random_state=seed
        )
        cv_score_obj = _get_cv_scoring_object(
            optimization_metric, metric_average_strategy, pos_label
        )
    else:
        (X_train, X_val, y_train, y_val) = train_test_split(
            X,
            y,
            test_size=val_ratio,
            random_state=seed,
            stratify=y if stratify_split else None,
            shuffle=shuffle_split,
        )

    def logging_callback(study: Study, trial: FrozenTrial):
        """Callback function to log trial progress"""
        verbose and logger.info(
            f"Trial {trial.number} finished with value: {trial.value} and parameters: {trial.params}"
        )
        try:
            verbose and logger.info(f"Best value so far: {study.best_value}")
            verbose and logger.info(f"Best parameters so far: {study.best_params}")
        except ValueError:
            verbose and logger.info(f"No successful trials completed yet")
        verbose and logger.info(f"" + "-" * 50)

    def objective(trial):
        try:
            n_estimators = trial.suggest_int("n_estimators", 100, 2000, log=True)
            max_depth = trial.suggest_int("max_depth", 10, 120, log=True)
            min_samples_split = trial.suggest_int("min_samples_split", 2, 32)
            min_samples_leaf = trial.suggest_int("min_samples_leaf", 1, 32)
            max_features = trial.suggest_categorical(
                "max_features", ["sqrt", "log2", None, 0.5, 0.8]
            )
            class_weight = constant_hyperparameters.get("class_weight")
            model = RandomForestClassifier(
                n_estimators=n_estimators,
                min_samples_leaf=min_samples_leaf,
                max_features=max_features,
                max_depth=max_depth,
                min_samples_split=min_samples_split,
                class_weight=class_weight,
                random_state=seed,
                n_jobs=n_jobs,
            )
            if use_cross_val:
                scores = cross_validate(
                    model, X, y, cv=cv, n_jobs=n_jobs, scoring=cv_score_obj
                )
                return scores["test_score"].mean()
            else:
                model.fit(X_train, y_train)
                score = _compute_score(
                    model,
                    X_val,
                    y_val,
                    optimization_metric,
                    metric_average_strategy,
                    pos_label,
                )
                return score
        except Exception as e:
            verbose and logger.error(
                f"Trial {trial.number} failed with error: {str(e)}"
            )
            raise

    study = create_study(
        direction=direction, sampler=chosen_sampler, pruner=chosen_pruner
    )
    study.optimize(
        objective,
        n_trials=n_trials,
        catch=(Exception,),
        n_jobs=n_jobs,
        callbacks=[logging_callback],
    )
    verbose and logger.info(f"Optimization completed!")
    verbose and logger.info(
        f"   Best Number of Trees       : {study.best_params['n_estimators']}"
    )
    verbose and logger.info(
        f"   Best Max Depth             : {study.best_params['max_depth']}"
    )
    verbose and logger.info(
        f"   Best Feature Sampling      : {study.best_params['max_features']}"
    )
    verbose and logger.info(
        f"   Best Min Samples per Leaf  : {study.best_params['min_samples_leaf']}"
    )
    verbose and logger.info(
        f"   Best Min Samples Split     : {study.best_params['min_samples_split']}"
    )
    verbose and logger.info(
        f"   Best {optimization_metric:<22}: {study.best_value:.4f}"
    )
    verbose and logger.info(f"   Sampler used               : {sampler}")
    verbose and logger.info(f"   Direction                  : {direction}")
    if use_cross_val:
        verbose and logger.info(f"   Cross-validation           : {cv_folds}-fold")
    else:
        verbose and logger.info(
            f"   Validation                 : single train/val split"
        )
    trials = study.trials_dataframe()
    trials["best_value"] = trials["value"].cummax()
    cols = list(trials.columns)
    value_idx = cols.index("value")
    cols = [c for c in cols if c != "best_value"]
    new_order = cols[: value_idx + 1] + ["best_value"] + cols[value_idx + 1 :]
    trials = trials[new_order]
    return (study.best_params, trials)


def _combine_test_data(
    X_test, y_true, y_pred, y_proba, class_names, features_names=None
):
    """
    Combine X_test, y_true, y_pred, and y_proba into a single DataFrame.

    Parameters:
    -----------
    X_test : pandas/polars DataFrame, numpy array, or scipy sparse matrix
        Test features
    y_true : pandas/polars Series, numpy array, or list
        True labels
    y_pred : pandas/polars Series, numpy array, or list
        Predicted labels
    y_proba : pandas/polars Series/DataFrame, numpy array (1D or 2D), or list
        Prediction probabilities - can be:
        - 1D array for binary classification (probability of positive class)
        - 2D array for multiclass (probabilities for each class)
    class_names : list or array-like
        Names of the classes in order.
        For binary classification with 1D y_proba, only the positive class name is needed.

    Returns:
    --------
    pandas.DataFrame
        Combined DataFrame with features, probabilities, y_true, and y_pred
    """
    if sparse.issparse(X_test):
        X_df = pd.DataFrame(X_test.toarray())
    elif isinstance(X_test, np.ndarray):
        X_df = pd.DataFrame(X_test)
    elif hasattr(X_test, "to_pandas"):
        X_df = X_test.to_pandas()
    elif isinstance(X_test, pd.DataFrame):
        X_df = X_test.copy()
    else:
        raise TypeError(f"Unsupported type for X_test: {type(X_test)}")
    if X_df.columns.tolist() == list(range(len(X_df.columns))):
        X_df.columns = (
            [f"feature_{i}" for i in range(len(X_df.columns))]
            if features_names is None
            else features_names
        )
    if isinstance(y_true, list):
        y_true_series = pd.Series(y_true, name="y_true")
    elif isinstance(y_true, np.ndarray):
        y_true_series = pd.Series(y_true, name="y_true")
    elif hasattr(y_true, "to_pandas"):
        y_true_series = y_true.to_pandas()
        y_true_series.name = "y_true"
    elif isinstance(y_true, pd.Series):
        y_true_series = y_true.copy()
        y_true_series.name = "y_true"
    else:
        raise TypeError(f"Unsupported type for y_true: {type(y_true)}")
    if isinstance(y_pred, list):
        y_pred_series = pd.Series(y_pred, name="y_pred")
    elif isinstance(y_pred, np.ndarray):
        y_pred_series = pd.Series(y_pred, name="y_pred")
    elif hasattr(y_pred, "to_pandas"):
        y_pred_series = y_pred.to_pandas()
        y_pred_series.name = "y_pred"
    elif isinstance(y_pred, pd.Series):
        y_pred_series = y_pred.copy()
        y_pred_series.name = "y_pred"
    else:
        raise TypeError(f"Unsupported type for y_pred: {type(y_pred)}")
    if isinstance(y_proba, list):
        y_proba_array = np.array(y_proba)
    elif isinstance(y_proba, np.ndarray):
        y_proba_array = y_proba
    elif hasattr(y_proba, "to_pandas"):
        y_proba_pd = y_proba.to_pandas()
        if isinstance(y_proba_pd, pd.Series):
            y_proba_array = y_proba_pd.values
        else:
            y_proba_array = y_proba_pd.values
    elif isinstance(y_proba, pd.Series):
        y_proba_array = y_proba.values
    elif isinstance(y_proba, pd.DataFrame):
        y_proba_array = y_proba.values
    else:
        raise TypeError(f"Unsupported type for y_proba: {type(y_proba)}")

    def sanitize_class_name(class_name):
        """Convert class name to valid column name by replacing spaces and special chars"""
        return str(class_name).replace(" ", "_").replace("-", "_")

    if y_proba_array.ndim == 1:
        y_proba_df = pd.DataFrame({"proba": y_proba_array})
    else:
        n_classes = y_proba_array.shape[1]
        if len(class_names) == n_classes:
            proba_columns = [f"proba_{sanitize_class_name(cls)}" for cls in class_names]
        else:
            proba_columns = [f"proba_{i}" for i in range(n_classes)]
        y_proba_df = pd.DataFrame(y_proba_array, columns=proba_columns)
    y_proba_df = y_proba_df.reset_index(drop=True)
    X_df = X_df.reset_index(drop=True)
    y_true_series = y_true_series.reset_index(drop=True)
    y_pred_series = y_pred_series.reset_index(drop=True)
    is_false_prediction = pd.Series(
        y_true_series != y_pred_series, name="is_false_prediction"
    ).reset_index(drop=True)
    result_df = pd.concat(
        [X_df, y_proba_df, y_true_series, y_pred_series, is_false_prediction], axis=1
    )
    return result_df


def _get_feature_importance(model, feature_names=None, sort=True, top_n=None):
    """
    Extract feature importance from a Random Forest model.

    Parameters:
    -----------
    model : RandomForestClassifier or RandomForestRegressor
        Fitted scikit-learn Random Forest model
    feature_names : list or array-like, optional
        Names of features. If None, uses generic names like 'feature_0', 'feature_1', etc.
    sort : bool, default=True
        Whether to sort features by importance (descending)
    top_n : int, optional
        If specified, returns only the top N most important features

    Returns:
    --------
    pd.DataFrame
        DataFrame with columns: 'feature', 'importance'
        Importance values represent the mean decrease in impurity (Gini importance)
    """
    importances = model.feature_importances_
    if feature_names is None:
        feature_names = [f"feature_{i}" for i in range(len(importances))]
    importance_df = pd.DataFrame({"feature": feature_names, "importance": importances})
    if sort:
        importance_df = importance_df.sort_values("importance", ascending=False)
    importance_df = importance_df.reset_index(drop=True)
    if top_n is not None:
        importance_df = importance_df.head(top_n)
    return importance_df


def _smart_shap_background(
    X: Union[np.ndarray, pd.DataFrame],
    model_type: str = "tree",
    seed: int = 42,
    verbose: bool = True,
) -> Union[np.ndarray, pd.DataFrame, object]:
    """
    Intelligently prepares a background dataset for SHAP based on model type.

    Strategies:
    - Tree: Higher sample cap (1000), uses Random Sampling (preserves data structure).
    - Other: Lower sample cap (100), uses K-Means (maximizes info density).
    """
    (n_rows, n_features) = X.shape
    if model_type == "tree":
        max_samples = 1000
        use_kmeans = False
    else:
        max_samples = 100
        use_kmeans = True
    if n_rows <= max_samples:
        verbose and logger.info(
            f"✓ Dataset small ({n_rows} <= {max_samples}). Using full data."
        )
        return X
    verbose and logger.info(
        f"⚡ Large dataset detected ({n_rows} rows). Optimization Strategy: {('K-Means' if use_kmeans else 'Random Sampling')}"
    )
    if use_kmeans:
        try:
            verbose and logger.info(
                f"   Summarizing to {max_samples} weighted centroids..."
            )
            return shap.kmeans(X, max_samples)
        except Exception as e:
            logger.warning(
                f"   K-Means failed ({str(e)}). Falling back to random sampling."
            )
            return shap.sample(X, max_samples, random_state=seed)
    else:
        verbose and logger.info(f"   Sampling {max_samples} random rows...")
        return shap.sample(X, max_samples, random_state=seed)


def _class_index_df(model):
    columns = {"index": pd.Series(dtype="int64"), "class": pd.Series(dtype="object")}
    if model is None:
        return pd.DataFrame(columns)
    classes = getattr(model, "classes_", None)
    if classes is None:
        return pd.DataFrame(columns)
    return pd.DataFrame({"index": range(len(classes)), "class": classes})


def train_cla_random_forest(
    X: DataFrame, y: Union[DataSeries, NDArray, List], options=None
) -> Tuple[
    Any,
    DataFrame,
    Any,
    Union[DataFrame, Dict],
    DataFrame,
    DataFrame,
    DataFrame,
    DataFrame,
    Dict,
]:
    options = options or {}
    n_estimators = options.get("n_estimators", 100)
    feature_strategy = options.get("feature_strategy", "Square root")
    max_depth_input = options.get("max_depth", 0)
    min_samples_leaf = options.get("min_samples_leaf", 1)
    if feature_strategy == "Automatic 30%":
        max_features = 0.3
    elif feature_strategy == "Automatic 60%":
        max_features = 0.5
    elif feature_strategy == "Square root":
        max_features = "sqrt"
    elif feature_strategy == "Logarithm":
        max_features = "log2"
    elif feature_strategy == "None":
        max_features = None
    else:
        max_features = "sqrt"
    max_depth = None if max_depth_input == 0 else max_depth_input
    auto_split = options.get("auto_split", True)
    test_val_size = options.get("test_val_size", 15) / 100
    shuffle_split = options.get("shuffle_split", True)
    stratify_split = options.get("stratify_split", True)
    retrain_on_full = options.get("retrain_on_full", False)
    custom_average_strategy = options.get("custom_average_strategy", "auto")
    use_cross_validation = options.get("use_cross_validation", False)
    cv_folds = options.get("cv_folds", 5)
    use_hpo = options.get("use_hyperparameter_optimization", False)
    optimization_metric = options.get("optimization_metric", "F1 Score")
    optimization_method = options.get("optimization_method", "Tree-structured Parzen")
    optimization_iterations = options.get("optimization_iterations", 50)
    pos_label_option = options.get("pos_label", "").strip()
    if pos_label_option == "":
        pos_label_option = None
    return_shap_explainer = options.get("return_shap_explainer", False)
    use_shap_sampler = options.get("use_shap_sampler", False)
    shap_feature_perturbation = options.get(
        "shap_feature_perturbation", "Interventional"
    )
    metrics_as = options.get("metrics_as", "Dataframe")
    n_jobs_str = options.get("n_jobs", "1")
    random_state = options.get("random_state", 42)
    activate_caching = options.get("activate_caching", False)
    verbose = options.get("verbose", True)
    n_jobs_int = -1 if n_jobs_str == "All" else int(n_jobs_str)
    skip_computation = False
    Model = None
    Metrics = pd.DataFrame()
    CV_Metrics = pd.DataFrame()
    Features_Importance = pd.DataFrame()
    SHAP = None
    HPO_Trials = pd.DataFrame()
    HPO_Best = None
    accuracy = None
    precision = None
    recall = None
    f1 = None
    roc_auc = None
    (n_samples, n_features, sparsity, is_sparse) = _get_shape_and_sparsity(X)
    shap_feature_names = _ensure_feature_names(X)
    if activate_caching:
        verbose and logger.info(f"Caching is activate")
        data_hasher = _UniversalDatasetHasher(n_samples, verbose=verbose)
        X_hash = data_hasher.hash_data(X).hash
        y_hash = data_hasher.hash_data(y).hash
        all_hash_base_text = f"HASH BASE TEXTPandas Version {pd.__version__}POLARS Version {pl.__version__}Numpy Version {np.__version__}Scikit Learn Version {sklearn.__version__}Scipy Version {scipy.__version__}{('SHAP Version ' + shap.__version__ if return_shap_explainer else 'NO SHAP Version')}{X_hash}{y_hash}{n_estimators}{feature_strategy}{max_depth_input}{min_samples_leaf}{('Use HPO' if use_hpo else 'No HPO')}{(optimization_metric if use_hpo else 'No HPO Metric')}{(optimization_method if use_hpo else 'No HPO Method')}{(optimization_iterations if use_hpo else 'No HPO Iter')}{(cv_folds if use_cross_validation else 'No CV')}{('Auto Split' if auto_split else test_val_size)}{shuffle_split}{stratify_split}{return_shap_explainer}{shap_feature_perturbation}{use_shap_sampler}{random_state}{(pos_label_option if pos_label_option else 'default_pos')}{custom_average_strategy}"
        all_hash = hashlib.sha256(all_hash_base_text.encode("utf-8")).hexdigest()
        verbose and logger.info(f"Hash was computed: {all_hash}")
        temp_folder = Path(tempfile.gettempdir())
        cache_folder = temp_folder / "coded-flows-cache"
        cache_folder.mkdir(parents=True, exist_ok=True)
        model_path = cache_folder / f"{all_hash}.model"
        metrics_dict_path = cache_folder / f"metrics_{all_hash}.json"
        metrics_df_path = cache_folder / f"metrics_{all_hash}.parquet"
        cv_metrics_path = cache_folder / f"cv_metrics_{all_hash}.parquet"
        hpo_trials_path = cache_folder / f"hpo_trials_{all_hash}.parquet"
        hpo_best_params_path = cache_folder / f"hpo_best_params_{all_hash}.json"
        features_importance_path = (
            cache_folder / f"features_importance_{all_hash}.parquet"
        )
        prediction_set_path = cache_folder / f"prediction_set_{all_hash}.parquet"
        shap_path = cache_folder / f"{all_hash}.shap"
        skip_computation = model_path.is_file()
    if not skip_computation:
        try:
            _validate_numerical_data(X)
        except Exception as e:
            verbose and logger.error(
                f"Only numerical or boolean types are allowed for 'X' input!"
            )
            raise
        if hasattr(y, "nunique"):
            n_classes = y.nunique()
        elif hasattr(y, "n_unique"):
            n_classes = y.n_unique()
        else:
            n_classes = len(np.unique(y))
        is_multiclass = n_classes > 2
        features_names = X.columns if hasattr(X, "columns") else None
        min_samples_split = 2 * min_samples_leaf
        class_weight = _choose_class_weight(y)
        if class_weight in ["balanced", "balanced_subsample"]:
            verbose and logger.info(
                f"Class imbalance, using '{class_weight}' mode for class weight"
            )
        fixed_test_split = None if auto_split else test_val_size
        (X_train, X_test, y_train, y_test, val_ratio) = _smart_split(
            n_samples,
            X,
            y,
            random_state=random_state,
            shuffle=shuffle_split,
            stratify=y if stratify_split else None,
            fixed_test_split=fixed_test_split,
            verbose=verbose,
        )
        if custom_average_strategy == "auto":
            metric_average_strategy = _get_best_metric_average_strategy(y_test)
        else:
            metric_average_strategy = custom_average_strategy
        effective_pos_label = None
        if metric_average_strategy == "binary":
            unique_classes = np.unique(y_train)
            if pos_label_option is not None:
                if pos_label_option in unique_classes:
                    effective_pos_label = pos_label_option
                else:
                    try:
                        as_int = int(pos_label_option)
                        if as_int in unique_classes:
                            effective_pos_label = as_int
                    except ValueError:
                        pass
            elif 1 in unique_classes:
                effective_pos_label = 1
            elif "1" in unique_classes:
                effective_pos_label = "1"
            if effective_pos_label is not None:
                verbose and logger.info(f"Using positive label: {effective_pos_label}")
            elif effective_pos_label is None and metric_average_strategy == "binary":
                error_message = 'The target appears to be binary, but no positive label was provided and no "1" class exists in the label set.'
                verbose and logger.error(error_message)
                raise ValueError(error_message)
        if use_hpo:
            verbose and logger.info(f"Performing Hyperparameters Optimization")
            constant_hyperparameters = {"class_weight": class_weight}
            (HPO_Best, HPO_Trials) = _hyperparameters_optimization(
                X_train,
                y_train,
                constant_hyperparameters,
                optimization_metric,
                metric_average_strategy,
                val_ratio,
                shuffle_split,
                stratify_split,
                use_cross_validation,
                cv_folds,
                optimization_iterations,
                "maximize",
                optimization_method,
                random_state,
                n_jobs_int,
                verbose=verbose,
                pos_label=effective_pos_label,
            )
            HPO_Trials = _normalize_hpo_df(HPO_Trials)
            n_estimators = HPO_Best["n_estimators"]
            max_depth = HPO_Best["max_depth"]
            min_samples_split = HPO_Best["min_samples_split"]
            min_samples_leaf = HPO_Best["min_samples_leaf"]
            max_features = HPO_Best["max_features"]
        Model = RandomForestClassifier(
            n_estimators=n_estimators,
            min_samples_leaf=min_samples_leaf,
            max_features=max_features,
            max_depth=max_depth,
            min_samples_split=min_samples_split,
            class_weight=class_weight,
            random_state=random_state,
            n_jobs=n_jobs_int,
        )
        if use_cross_validation and (not use_hpo):
            verbose and logger.info(
                f"Using Cross-Validation to measure performance metrics"
            )
            CV_Metrics = _perform_cross_validation(
                Model,
                X_train,
                y_train,
                cv_folds,
                metric_average_strategy,
                shuffle_split,
                random_state,
                n_jobs_int,
                verbose,
                pos_label=effective_pos_label,
            )
        Model.fit(X_train, y_train)
        y_pred = Model.predict(X_test)
        if is_multiclass:
            y_score = Model.predict_proba(X_test)
        elif effective_pos_label is not None:
            try:
                pos_idx = list(Model.classes_).index(effective_pos_label)
                y_score = Model.predict_proba(X_test)[:, pos_idx]
            except ValueError:
                y_score = Model.predict_proba(X_test)[:, 1]
        else:
            y_score = Model.predict_proba(X_test)[:, 1]
        score_params = {"average": metric_average_strategy, "zero_division": 0}
        if effective_pos_label:
            score_params["pos_label"] = effective_pos_label
        accuracy = accuracy_score(y_test, y_pred)
        precision = precision_score(y_test, y_pred, **score_params)
        recall = recall_score(y_test, y_pred, **score_params)
        f1 = f1_score(y_test, y_pred, **score_params)
        if is_multiclass:
            roc_auc = roc_auc_score(
                y_test, y_score, multi_class="ovr", average=metric_average_strategy
            )
        else:
            roc_auc = roc_auc_score(y_test, y_score)
        if metrics_as == "Dataframe":
            Metrics = pd.DataFrame(
                {
                    "Metric": [
                        "Accuracy",
                        "Precision",
                        "Recall",
                        "F1-Score",
                        "ROC AUC",
                    ],
                    "Value": [accuracy, precision, recall, f1, roc_auc],
                }
            )
        else:
            Metrics = {
                "Accuracy": accuracy,
                "Precision": precision,
                "Recall": recall,
                "F1-Score": f1,
                "ROC AUC": roc_auc,
            }
        verbose and logger.info(f"Accuracy  : {accuracy:.4f}")
        verbose and logger.info(f"Precision : {precision:.4f}")
        verbose and logger.info(f"Recall    : {recall:.4f}")
        verbose and logger.info(f"F1-Score  : {f1:.4f}")
        verbose and logger.info(f"ROC-AUC   : {roc_auc:.4f}")
        Prediction_Set = _combine_test_data(
            X_test, y_test, y_pred, y_score, Model.classes_, features_names
        )
        verbose and logger.info(f"Prediction Set created")
        if retrain_on_full:
            verbose and logger.info(
                "Retraining model on full dataset for production deployment"
            )
            Model.fit(X, y)
            verbose and logger.info(
                "Model successfully retrained on full dataset. Reported metrics remain from original held-out test set."
            )
        Features_Importance = _get_feature_importance(Model, features_names)
        verbose and logger.info(f"Features Importance computed")
        if return_shap_explainer:
            if shap_feature_perturbation == "Interventional":
                SHAP = shap.TreeExplainer(
                    Model,
                    (
                        _smart_shap_background(
                            X if retrain_on_full else X_train,
                            model_type="tree",
                            seed=random_state,
                            verbose=verbose,
                        )
                        if use_shap_sampler
                        else X if retrain_on_full else X_train
                    ),
                    feature_names=shap_feature_names,
                )
            else:
                SHAP = shap.TreeExplainer(
                    Model,
                    feature_names=shap_feature_names,
                    feature_perturbation="tree_path_dependent",
                )
            verbose and logger.info(f"SHAP explainer generated")
        if activate_caching:
            verbose and logger.info(f"Caching output elements")
            joblib.dump(Model, model_path)
            if isinstance(Metrics, dict):
                with metrics_dict_path.open("w", encoding="utf-8") as f:
                    json.dump(Metrics, f, ensure_ascii=False, indent=4)
            else:
                Metrics.to_parquet(metrics_df_path)
            if use_cross_validation and (not use_hpo):
                CV_Metrics.to_parquet(cv_metrics_path)
            if use_hpo:
                HPO_Trials.to_parquet(hpo_trials_path)
                with hpo_best_params_path.open("w", encoding="utf-8") as f:
                    json.dump(HPO_Best, f, ensure_ascii=False, indent=4)
            Features_Importance.to_parquet(features_importance_path)
            Prediction_Set.to_parquet(prediction_set_path)
            if return_shap_explainer:
                with shap_path.open("wb") as f:
                    joblib.dump(SHAP, f)
            verbose and logger.info(f"Caching done")
    else:
        verbose and logger.info(f"Skipping computations and loading cached elements")
        Model = joblib.load(model_path)
        verbose and logger.info(f"Model loaded")
        if metrics_dict_path.is_file():
            with metrics_dict_path.open("r", encoding="utf-8") as f:
                Metrics = json.load(f)
        else:
            Metrics = pd.read_parquet(metrics_df_path)
        verbose and logger.info(f"Metrics loaded")
        if use_cross_validation and (not use_hpo):
            CV_Metrics = pd.read_parquet(cv_metrics_path)
            verbose and logger.info(f"Cross Validation metrics loaded")
        if use_hpo:
            HPO_Trials = pd.read_parquet(hpo_trials_path)
            with hpo_best_params_path.open("r", encoding="utf-8") as f:
                HPO_Best = json.load(f)
            verbose and logger.info(
                f"Hyperparameters Optimization trials and best params loaded"
            )
        Features_Importance = pd.read_parquet(features_importance_path)
        verbose and logger.info(f"Features Importance loaded")
        Prediction_Set = pd.read_parquet(prediction_set_path)
        verbose and logger.info(f"Prediction Set loaded")
        if return_shap_explainer:
            with shap_path.open("rb") as f:
                SHAP = joblib.load(f)
            verbose and logger.info(f"SHAP Explainer loaded")
    Model_Classes = _class_index_df(Model)
    return (
        Model,
        Model_Classes,
        SHAP,
        Metrics,
        CV_Metrics,
        Features_Importance,
        Prediction_Set,
        HPO_Trials,
        HPO_Best,
    )

Brick Info

version v0.1.4
python 3.11, 3.12, 3.13
requirements
  • shap>=0.47.0
  • scikit-learn
  • pandas
  • numpy
  • torch
  • numba>=0.56.0
  • shap
  • cmaes
  • optuna
  • scipy
  • polars
  • xxhash